
Oikos 116: 174�180, 2007

doi: 10.1111/j.2006.0030-1299.15383.x,

Copyright # Oikos 2007, ISSN 0030-1299

Subject Editor: Tim Benton, Accepted 29 August 2006

The observed range for temporal mean-variance scaling
exponents can be explained by reproductive correlation

Ford Ballantyne IV and Andrew J. Kerkhoff

F. Ballantyne IV (fballant@princeton.edu), Dept of Biology, Univ. of New Mexico, Albuquerque, NM 87131, USA. Present address:
Dept of Ecology and Evolutionary Biology, Princeton Univ., Princeton, NJ 08544, USA. � A. J. Kerkhoff, Dept of Ecology and
Evolutionary Biology, Univ. of Arizona, Tucson, AZ 85721, USA.

The mean-variance scaling relationship known as Taylor’s power law has been well documented empirically over
the past four decades but a general theoretical explanation for the phenomenon does not exist. Here we provide
an explanation that relates empirical patterns of temporal mean-variance scaling to individual level reproductive
behavior. Initially, we review the scaling behavior of population growth models to establish theoretical limits for
the scaling exponent b that is in agreement with the empirically observed range (15/b5/2). We go on to show
that the degree of reproductive covariance among individuals determines the scaling exponent b. Independent
reproduction results in an exponent of one, while completely correlated reproduction results in the upper limit
of two. Intermediate exponents, which are common empirically, can be generated through the decay of
reproductive covariance with increasing population size. Finally, we describe how the link between reproductive
correlation and the scaling exponent provides a way to infer properties of individual-level reproductive behavior,
such as the relative influence of demographic stochasticity, from a macroecological pattern.

Populations fluctuate as a consequence of variability
at multiple scales. Determining how different sources
of variation affect population dynamics remains a
challenge in ecology. Despite our knowledge that
intrinsic life-history variation and external environmen-
tal variability contribute to population fluctuations
(Dixon et al. 1999, Lima et al. 2001, Lande et al.
2003), it is difficult to assess the relative influence of
either on empirical populations. This is because the
effects of the former occur at the individual level and
the latter occur at the population level. Currently, there
is no general agreement about how to map individual
dynamics onto patterns observed at the level of the
population (Maurer and Taper 2002). But once the link
is made, a synoptic analysis (Taylor 1986) can illustrate
how individual level dynamics are scaled up to popula-
tion level dynamics. Only then will we be able to
understand how variability at different scales contri-
butes to fluctuations in abundance.

Fluctuations in abundance through time and across
space are often characterized by plotting the logarithm
of variance in abundance as a function of the

logarithm of mean abundance. This mean-variance
scaling relationship, first described by Taylor (1961)
and known since as Taylor’s power law, has the form
V�/aMb, where V is the variance of abundance, the
normalization constant, a, is a measure of individual
level variability, M is mean abundance, and b is the
scaling exponent (the slope of the power law on log-
log axes). Taylor’s power law is well documented for
animal and insect populations (Taylor 1961, Taylor
and Woiwod 1980, Taylor et al. 1983, Taylor 1986,
Maurer and Taper 2002) and has recently been shown
to characterize reproductive output in trees (Kerkhoff
and Ballantyne 2003). Although Taylor (1961) initi-
ally plotted spatial abundance data, the relationship
between temporal mean and variance in abundance is
also well characterized by power law scaling (Taylor
and Woiwod 1982, Taylor 1986, Maurer and Taper
2002, Kerkhoff and Ballantyne 2003, Ballantyne and
Kerkhoff 2005). Empirically, b for temporal data
ranges from approximately one to approximately two
(Taylor and Woiwod 1980, 1982, Keeling 2000,
Maurer and Taper 2002).
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The general theoretical framework we present in this
paper directly links temporal mean-variance scaling of
abundance to the degree of reproductive covariance
among individuals in populations. We begin by
summarizing mean-variance scaling of well-known
population models and then establish a theoretical basis
for the empirically observed range of the scaling
exponent, b. Next, we show how intermediate slopes
may arise from density dependent reproductive covar-
iance. Finally, we discuss how this body of theory for
mean-variance scaling relates to the interplay between
demographic and environmental stochasticity and how
inference about individual behavior can be made from
the scaling exponent.

Mean-variance scaling for population
models

When describing reproductive behavior in populations,
the production and survival of offspring can be
independent of population size (density independent)
or dependent on population size (density dependent).
To formulate models that describe density independent
population dynamics, stochastic models, such as birth-
death processes, are often the natural choice. In
contrast, density dependent population dynamics mod-
els are predominantly deterministic. Models that
characterize population dynamics as either purely
density independent or purely density dependent
represent rarified extremes, unlikely to be found in
nature and most ecologists would agree that some
combination of density independent and density
dependent processes interact to cause populations to
fluctuate. Theoreticians have addressed the comple-
mentary effects of determinism and stochasticity on
population fluctuations but conclusions often lack
generality because they pertain to specific models
only. Despite the fact that describing populations
dynamics as either purely density independent or purely
density dependent is unrealistic, we briefly summarize
the mean-variance scaling properties of population
dynamics models that represent these extremes to link
density dependence and density independence to the
empirical limits of b.

Describing reproduction and survival as density
independent has historically lead to stochastic process
models. In the prototypical birth-death processes,
probabilities of producing offspring, producing no
offspring, and dying are all independent of population
size. The density independence of vital demographic
parameters results in linear mean-variance scaling, b�/1
(see Feller 1968, May 1973, Kot 2001 for details).
Models of density dependent demographics are virtually
always deterministic so all individuals in a population

behave exactly the same with respect to reproduction
and survival. All deterministic models that can be
linearly rescaled to a dimensionless form, for example
logistic growth, result in quadratic mean-variance
scaling, b�/2 (Ballantyne 2005).

The correspondence between the limits of the mean-
variance scaling exponent b determined by population
models and the empirical range of b provides more
support for the idea that the limiting exponents for
Taylor’s power law are related to the dependence among
individuals in a populations (Keeling and Grenfell 1999,
Keeling 2000). The fact that the exponent of Taylor’s
power law empirically varies between one and two
suggests that mean-variance scaling of abundance is
constrained by the limits set by totally independent and
totally dependent behavior. However, this intuitive
relationship between extreme exponents and depen-
dence cannot explain the more frequently observed
intermediate slopes (Taylor and Woiwod 1980, Ander-
son et al. 1982, Keeling 2000, Maurer and Taper 2002)
that lie between one and two. Next, we present a general
description of a population that allows us to link the
entire range of empirically observed exponents for
Taylor’s power law to the contiuum of reproductive
covariance among individuals.

Mean-variance scaling for populations of
random individuals

In the study of populations, the dynamics of the entire
population are dictated by the aggregated dynamics of
the individuals comprising it. The particular combina-
tion of life-history and the external environment
determines the nature of observed density dependence
and observed population fluctuations. Obligate sexual
reproducers and aggregates that have highly correlated
responses to environmental forcing will exhibit more
coherent reproductive behavior than asexual reprodu-
cers or organisms that experience a high degree of
environmental variability on the scale of an individual.
By considering individuals in a population as random
variables, we are able to link the exponent of Taylor’s
power law to the degree of individual reproductive
covariance in populations. In this paper we only
concern ourselves with populations that, on average,
are neither increasing or declining. For such steady-state
populations, we are able to show that population
variance is a function of mean abundance and to isolate
the effect of individual reproductive variation, i.e.
demographic stochasticity on overall population fluc-
tuations.

Our description of population dynamics exploits the
simple but often overlooked fact that a population is the
sum of individuals and therefore population dynamics
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are the sum of individual dynamics. All ecologists
intuitively know this but since it is key for our
development of mean-variance scaling theory and it is
fundamental to the definition of a population, we state
it explicitly. The theory presented here generalizes the
elementary calculation of moments of sums of random
variables outlined in Ballantyne and Kerkhoff (2005)
for populations with fixed abundance to populations
with varying abundance.

Populations as random sums

We consider individual reproductive output Ri(t) for a
time interval (t�/1, t] a random variable with mean m
and variance s2. The reproduction of each individual in
a population is characterized by these first two
moments, i.e. the Ri are identically distributed. Repro-
ductive output for the entire population P(t) is
calculated by summing individual reproductive output,

P(t)�
X

i

Ri(t) (1)

If the population size is fixed at a given n, as in
Ballantyne and Kerkhoff (2005), the calculation of the
mean and variance of reproductive output for the
population is straightforward yielding

E[P(t)]�E

�XN

i�1

Ri(t)

�
�

XN

i�1

E[Ri(t)]�Nm (2)

and

V[P(t)]�Ns2�N(N�1)s2
ij

�N[s2�s2
ij]�N2s2

ij (3)

respectively. In Eq. 2 and 3, s2
ij is the covariance

between Ri and Rj and is independent of i and j because
all R are identically distributed. If the individuals
comprising P(t) are independent with respect to
reproduction, s2

ij�/0 which results in linear depen-
dence of both the population mean and variance on
population size and an exponent of 1 for Taylor’s power
law. In complete contrast, if reproductive output of all
individuals in the population is completely correlated,
s2�/s2

ij and population variance depends quadratically
on population size which in turn results in an exponent
of 2 for Taylor’s power law. Populations with fixed n
are certainly not the general rule in the natural world
and only focusing on reproductive output and not
survival neglects important demographic and ecological
processes. Therefore, we next relax this assumption
which permits the number of reproductive adults in a
population to vary.

To incorporate fluctuations in the number of
reproductive adults in a population and to derive limits
for Taylor’s power law for population size, we define n,

the size of the population, to be a random variable with
mean N and variance h2, both independent of Ri, and
compute the mean and variance of the now random
sum P(t). By allowing n to vary, we implicitly
incorporate the fact the abundance of reproductive
adults fluctuates around a carrying capacity N. We also
change the definition of Ri to include survival. For the
following random sums, Ri is the number of surviving
adults the following time step produced by one adult,
not just reproductive output. Consequently, the sum
P(t) now describes the number of individuals in
the population. The detailed calculation is left to the
appendix but the resulting mean and variance of the
now random sum P(t) are

E[P(t)]�Nm (4)

and

V[P(t)]�m2h2�s2
ijh

2�N(s2�s2
ij)�N2s2

ij (5)

respectively. First it is important to notice that m�/1
meaning that on average each adult only replaces itself
in the population. Again we see that both the mean (Eq.
4) and the variance (Eq. 5) of the random sum are
linear functions of N, the mean number of reproductive
adults in the population, if s2

ij�/0. Similarly, the mean
variance scaling exponent is one if n and R are
independent. As was the case for reproductive output,
if s2

ij�/s2, the linear term in N in Eq. 5 vanishes and
variance in the number of reproductive adults scales
quadratically with mean population size. When covar-
iance equals variance, all individuals exhibit the same
per capita dynamics. This gives rise to the familiar result
that for a scalar N, V(NR)�/N2V(R) which is
consistent with the fact that rescaling many population
dynamics models in a similar manner results in an
exponent of two for Taylor’s power law (Ballantyne
2005).

The upper and lower limits for the exponent of
Taylor’s power law characterizing reproductive output
and abundance of reproductive adults are equal and
directly related to the correlation of individual dy-
namics. However, empirically observed exponents often
assume intermediate values as opposed to the theoretical
limits of 1 and 2. Below we describe two potential
scenarios that could give rise to intermediate values for
the exponent of Taylor’s power law.

Constant moments and scaling breaks

Under the assumption of second order stationarity, s2

and s2
ij are constant and the intermediate values of b

often observed for empirical data can result from a
transition from a range of population sizes for which
individual level variance, s2, dominates reproductive
covariance among individuals, s2

ij, to a range of
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population sizes for which the inverse is true. If we do
have reason to believe the assumption of second order
stationarity, we are able to calculate the population size
at which a scaling break occurs. For example, in Eq. 3
and 5, we see that if s2�/s2

ij, the scaling of aggregate
variance will be predominantly linear for populations
smaller than s2/s2

ij, and predominantly quadratic for
those larger. Thus, the ratio of variance to covariance
determines the population size at which behavior of
individuals appears correlated. The transition from
linear to quadratic scaling is plotted in Fig. 1 using a
variance to covariance ratio of 100:1, which is the
critical population size described by Lande et al. (2003).
The models of Keeling (2000) and Anderson et al.
(1982) exhibit this type of scaling. It is certainly likely
that empirical data span this threshold because esti-
mates of environmental stochasticity, which influence
s2

ij, are often an order of magnitude smaller than
estimates of demographic stochasticity (Lande et al.
2003), which influences s2. A range of population sizes
that spans the critical threshold given by the variance to
covariance ratio, and sampling error could be respon-
sible for an intermediate slope. Although this explana-
tion seems unlikely because of the high degree of
correlation and the homoscadistic variance observed for
empirical Taylor’s power law, evaluating the presence or
absence of such scaling breaks in limited data remains a
significant statistical challenge.

Non-constant moments and intermediate
exponents for Taylor’s power law

If we choose to relax the assumption of second order
stationarity, we not only have a more realistic descrip-
tion of population dynamics but we can also more easily
reproduce the apparently constant intermediate expo-
nents for Taylor’s power law by explicitly allowing the
mean, the variance, and/or the covariance of individual
reproductive output to be functionally related to
population size. The expressions for the moments of
whole population reproductive output now become

E[P(t)]�Nf M(N) (6)

and

V[P(t)]aN[f V(N)�f C(N)]�N2f C(N) (7)

in the most general sense. The functions fM, fV, and fC
respectively characterize the dependence of the mean,
the variance, and the covariance of reproductive output
on aggregate population size. Although individual
reproductive variability may be a function of population
size in some populations (Lande et al. 2003), to our
knowledge it is not a general phenomenon so, for
simplicity, we assume no relationship between popula-
tion size and individual reproductive variability (fV

constant, independent of N). Again, for steady state
populations, fM�/1.

The above assumptions allow us to infer how
reproductive covariance changes with population size
from the exponent of Taylor’s power law. Given an
exponent b for Taylor’s power law, it is straightforward
to show from Eq. 7 that covariance, or fC(N) is
proportional to Nb�2. Thus, for a given exponent
15/b5/2, reproductive covariance decreases as a func-
tion of aggregate population size. The decrease in
correlation (rescaled covariance) with population size
is plotted in Fig. 2, for different values of the scaling
exponent b. Initially the correlation coefficient de-
creases quite steeply as population size increases, but
then remains relatively constant. Eventually the correla-
tion among individuals will asymptote to zero but at a
constantly decreasing rate. The relative constancy of the
correlation coefficient across a wide range of aggregate
population sizes suggests that the exponent of Taylor’s
power law could be predicted by measurements of
correlation in the field. In this paper, we are quite
restrictive about the functions fM, fV, and fC, but in
certain situations, it may also be necessary to allow both
fM and fV to change with aggregate population size.

Discussion

Regardless of its underlying causes, Taylor’s power law
is a useful characterization of population fluctuations.
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The exponent of Taylor’s power law indicates how the
magnitude of relative fluctuations in abundance
changes with population size. An exponent of two
means that population dynamics are invariant with
respect to population size. An exponent of less than two
means that the coefficient of variation of fluctuations in
abundance is a decreasing function of population size
and that larger populations experience smaller relative
fluctuations. The smaller the exponent, the greater the
damping effect of population size on the relative
magnitude of fluctuations in abundance. The fact that
most empirical data are characterized by exponents less
than two indicates that larger populations are less
susceptible to large relative fluctuations than smaller
populations. Therefore, at the most superficial level, the
exponent of Taylor’s power law can be used to assess the
stability of populations. Even in the absence of a
mechanistic understanding of the underlying causes of
Taylor’s power law, exponents have been related to
community level stability properities (Doak et al. 1998,
Tilman 1999, Cottingham et al. 2001). The utility of b
as a metric for population viability analysis should be
further investigated in detail.

The results presented here suggest that some
individual-scale variability might be a hallmark of stable
systems in general because it reduces system-scale
variability. Individual-scale variability decouples indivi-
dual behavior and prevents all individuals in a popula-
tion from responding the same way in response to
sytem-wide perturbations. When individuals exhibit
some degree of independence in their behavior, a
population has greater potential to respond differen-
tially to environmental variability. If individuals are
completely correlated, a population is only capable of
one response to a particular environmental change.
Theoretical studies of meta-populations have shown

that highly connected subpopulations fluctuate more
synchronously than those that are isolated (Czaran
1998, Hanski 1999) and therefore experience large
relative fluctuations in abundance (Foley 1994). As a
result, some degree of isolation can stabilize metapo-
pulations (Hassell et al. 1994, Czaran 1998, Hanski
1999). The fact that decorrelation can exert a stabilizing
influence on both single species populations and on
meta-populations suggests that Taylor’s power law
exponents may be linked to meta-population processes.
We see this as an exciting avenue for future research.

Traditionally, two major sources of variation in
abundance have been thought to be demographic and
environmental stochasticity (Lande et al. 2003). Demo-
graphic stochasticity is associated with life-history and
variability at the scale of the individual and environ-
mental stochasticity is variability that affects all members
of a population similarly. Taylor’s power law suggests
that increasing demographic stochasticity increases in-
dividual reproductive variance while increasing environ-
mental stochasticity increases reproductive covariance.
Thus, a high degree of demographic stochasticity may
tend to stabilize populations as long as they are large,
whereas environmental stochasticity can destabilize
populations by correlating reproductive behavior. How-
ever, the absolute magnitude of both demographic and
environmental stochasticity obviously plays a crucial role
in determining population fluctuations. As can be seen
in Eq. 3 and 5, individual level variability (s2) resulting
from demographic stochasticity as well as covariance
(s2

ij), often the result of environmental stochasticity,
both influence the normalization constant of the power
law. Particular combinations of demographic stochasti-
city and environmental stochasticity can mask the
importance of one or the other except at extreme
population sizes (Lande et al. 2003).

The scale of stochasticity affecting populations can
potentially be inferred from the exponent of Taylor’s
power law. Populations for which demographic sto-
chasticity is greater than the magnitude of environ-
mental stochasticity should generate exponents closer to
one than to two. In contrast, populations subject to
large relative environmental stochasticity should be
characterized by exponents closer to two. Therefore,
an empirically calculated exponent near one may imply
that demographic stochasticity has a larger relative effect
on population fluctuations than environmental stochas-
ticity. The exponent, b, also allows one to compare the
relative influence of demographic and environmental
stochasticity on different populations. It is a scale-free
parameter because it reflects the relative influence of
these two types of stochasticity.

The greatest potential utility of the explanation we
suggest for Taylor’s power law is that it allows us to
ascertain information about individual-scale behavior
from a macro-scale pattern. Traditionally, individual
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behavior is scaled up to population dynamics (Suther-
land, 1996), but using the results presented here, it is
possible to relate population dynamics to individual
reproductive behavior. From b, which is a macro-scale
or synoptic description, we are able to recover the
degree of correlation of individual reproductive beha-
vior in ecological populations. In the past, population
biologists have relied on detailed life table data to
understand reproductive behavior at the level of the
individual, but b can potentially allow inference
concerning the functional correlation among interacting
individuals based only on the macroscopic dynamics of
large populations. By looking at a large-scale pattern,
we can potentially infer the scale of influential
variability for populations.

To summarize, the empirical range for the exponent
of Taylor’s power law (approx. 15/b5/2) suggests that
observed population fluctuations are the result of
competing processes that correlate and de-correlate
individual reproductive behavior. We have shown that
completely uncorrelated reproduction produces the
lower limit of one for the exponent of Taylor’s power
law, that completely correlated individuals produces the
upper limit of two and that intermediate exponents can
be the result of a functional dependence of reproductive
covariance on population size. Our proposed explana-
tion provides a general context that subsumes previously
proposed causes for mean-variance scaling (Gillis et al.
1986, Sugihara et al. 1990, Keeling and Grenfell 1999,
Keeling 2000, Kilpatrick and Ives 2003). Furthermore,
it allows us to relate variability at different scales to
variability at the population level. Most generally,
processes that are variable at the scale of the individual
lead to exponents closer to one which reflect indepen-
dence among individuals and processes that are variable
at the scale of the population result in exponents closer
to two which reflect dependence among individuals.
For ecological populations, total independence prevents
individuals from capitalizing on constant properties of
their environment but total dependence increases the
likelihood of precipitous declines and reduces the
capacity for response to environmental change. Organ-
isms must therefore strike a balance between correlated
and independent reproductive behavior in order for
populations to persist.
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Appendix 1.

The calculation of the mean of a random sum P(t)�
an

i�1Ri(t) in which E[Ri(t)]�/m, V[Ri(t)]�/s2, E[n]�/

N, and V[n]�/h2.
For the mean:

E[P(t)]�
X�

i�1
E[P(t)jn�i]pn(i) (8)

�
X�

i�1
E[R1(t)�R2(t)�� � ��Ri(t)jn�i]pn(i) (9)

�m
X�

i�1
ipn(i)�mE(n)�mN (10)

For the variance:

V[P(t)]�E[(P(t)�mN)2]�E[(P(t)�nm)2]
�E[m2(n�N)2]�2E[m(P(t)�nm)(n�N)] (11)

First notice that

E[m2(n�N)2]�m2E[(n�N)2]�m2h2 (12)

Next,

E[m(P(t)�nm)(n�N)]

�m
X�

i�1
E[(P(t)� im)(i�N)jn� i]pn(i) (13)

Since (i�/N) are numbers, they can be removed from
the expectation operation to yield

E[m(P(t)�nm)(n�N)]

�m
X�

i�1
(i�N)E[(P(t)� im)jn� i]pn(i) (14)

and because P(t)�/R1(t)�/R2(t)�/� � ��/Ri(t), E[(P(t)�/

im)]�/0�/i. Therefore Eq. 14 is equal to zero. Finally

E[m(P(t)�nm)2]

�
X�

i�1
E[(P(t)�nm)2jn� i]pn(i) (15)

and again remembering that P(t)�/R1(t)�/R2(t)�/

� � ��/Ri(t), the above sum can be separated into two
parts,

E[(P(t)�nm)2]�
X�

i�1
E[(R1(t)�m)2

�(R2(t)�m)2� � � ��(Ri(t)�m)2jn� i]pn(i) (16)

�
X�

i�1

X�

j�1

X�

k�1
E[(Rj(t)�m)

�(Rk(t)�m)jn� i]pn(i) (17)

for j"/k The first summation corresponds to variance
and the second summation corresponds to covariance
and can be rewritten as

E[(P(t)�nm)2]�s2
X�

i�1
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Adding Eq. 12 and 20 gives the variance of the sum P(t)
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