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Throughout the history of studying scaling relationships in
biology there has been much discussion of how to best estimate
scaling parameters (Finney, 1941; Sprugel, 1983; Charnov,
1993; Smith, 1993; Blackburn and Gaston, 1998; Marquet,
2000; Packard and Birchard, 2008; Packard and Boardman, 2008).
A recent exchange in the literature (between Packard, 2009
and Kerkhoff and Enquist, 2009) made it clear that the discussion
is continuing, and prompted me to write a short note focusing
on fitting scaling relationships to data. While I was writing the
initial version of this note that outlines the practical theoretical
side of fitting scaling relationships to data, Xiao et al. (2011)
were independently focusing on the same issue by explicitly
analyzing many recently published data sets. In the interim,
Packard (2011a, 2011b) and Packard et al. (2011) have reiterated
and expanded on the main points put forth in Packard (2009).
Here, | directly address the debate over the appropriateness
of additive versus multiplicative error for scaling relationships
by explicitly formulating probability models for the different
types of error structure, and then illustrate how to evaluate the
fit of the different error models to observed scaling data. In
particular, I write the likelihood functions for each of the two
competing error models discussed in the exchange between
Packard (2009) and Kerkhoff and Enquist (2009), and describe
how inference can be made therefrom. As an example, I analyze
one of the data sets in Packard (2009) and squarely place the results
here in the context of the recent and extensive analysis of data by
Xiao et al. (2011). My hope is that this contribution sparked by the
difference of opinion about error structure articulated by Packard
(2009) and Kerkhoff and Enquist (2009), and the coincident work
of Xiao et al. (2011), presumably influenced by the same exchange,
will help clarify some of the issues regarding fitting models with
different error structure to biological data and provide some
degree of closure to the recent debate. At this point, readers will
hopefully be in a position to draw their own conclusions about the
appropriateness of different methods when fitting scaling models
to data.
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1. The exchange between Packard (2009) and Kerkhoff and
Enquist (2009)

In my eyes, the substantive difference of opinion arose because
Kerkhoff and Enquist (2009) feel that multiplicative error generally
serves as a better underlying probability model than additive error
for allometric relationships, whereas Packard (2009) feels that
statistical models must generally be based on the original (in this
case additive) scale of measurement and that transformation should
be used sparingly. This exchange illustrates two major issues that
arise when fitting scaling relationships to biological data, one
practical and one philosophical. Regarding the philosophical, if one
has strong evidence for a particular model of error, an argument can
be made for using this error model to estimate scaling parameters,
potentially with explicit specification of a prior. However, if the focus
is on whether additive or multiplicative error models yield better fits
to data, one can directly evaluate the fit of scaling relationships with
different assumptions regarding error, remaining agnostic about
which formulation of error makes the most biological sense.

Packard (2009) makes the case for graphically fitting models to
data, which has its precedent and appropriate place, but does not
acknowledge that it is possible to directly evaluate the fit of models
with different error structure using maximum likelihood. His point
regarding the importance of plotting and examining one’s data on
original scales of measurement is well taken, but many of the guiding
principles for assessing model fit are based on underlying probability
models, not visual inspection. Presumably, other ecologists are also
unsure about how to explicitly specify competing probability models
and employ maximum likelihood for evaluating the fit of models with
different error structure, making this exchange an opportunity to
illustrate an approach one might take. This exchange also highlights
the need for greater statistical fluency in the field of ecology (Ellison
and Dennis, 2010). In the following example, I illustrate how this
approach can be used to directly assess the fit of allometric models
with additive and multiplicative error structure, which is the basis for
the analysis of data in Xiao et al. (2011).
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2. Additive and multiplicative models of error for scaling
relationships

Assume, as Packard (2009) does that there are two candidate
models for explaining one’s data with a scaling relationship:

Y = ax’ +error (1)
and
Y =ax? . error (2)

differing only in how error is incorporated. To evaluate the fit of
competing models, discrepancies between predictions that are
the result of particular parameter values and data must be
quantified. Typically, we like for deviations to be distributed
evenly about a model prediction and formally express this by
choosing an error model so that the expected value of a response
variable for a particular value of a predictor is the model itself. In
other words, error should be centered around the expected value
given a particular value of a predictor variable. For the additive
error model, choosing any error distribution with a mean of zero
achieves this desired result:

E[Y] = E[aX" +error] = aX” + E[error], 3)

but for the multiplicative error model, choosing an error distribu-
tion with a mean of one is required because

E[Y]= E[aX” - error] = aX" - E[error]. “4)

In principle, any distribution could be assumed for the error, but
to be consistent with Packard (2009), I assume normal error in the
additive error model (1) and log-normal error in the multi-
plicative error model (2). Xiao et al. (2011) employ the same
approach. It should be noted however that this assumption, in no
way, takes away from the generality of the approach. Letting
€~ N(0,6?) yields the following scaling models:

Y=ax’+e 5)
and
Y=ax?. e/, (6)

with appropriate expectation properties for additive and multi-
plicative error respectively. Equation (6) is a more general
description of multiplicative error than presented in Packard
(2009), and incorporates a correction factor (¢2/2) so that
E[Y]=aX®, which is not incorporated by Xiao et al. (2011). This
correction is important for prediction and interpretation of the
normalization constant a, but does not influence inference (see
below). Regardless of assumptions about error, the exercise of
model fitting consists of obtaining the parameters that minimize
the deviations of observed data from the model, or in other words,
maximizing the probability of the data. As is standard practice, |
denote predicted or expected values y, which is the result of a
model with parameters a and b (E[Y]=y). The comparison
between model and data is made via y; and y for all i, with y;
the observed values of the dependent variable. For the additive
error model:

Yi—y =y;—ax{ ~ N(0,?) 7

meaning that linear deviations of data from the underlying model
will be distributed normally with mean 0. For the multiplicative
error model:

2
Iny;—Ina—bInx;+ % ~ N(0,6?), (8)

meaning that log-transformed deviations from the log-
transformed underlying model, the left hand side of (8), will be
distributed normally with mean 0. For both models, the

deviations of data from predictions have been expressed in terms
of the underlying probability model for error, namely ¢ ~ N(0,52).
The ensuing likelihoods for the additive and multiplicative mod-
els are respectively

Uaboy= (Zn(,}Z)n/z e 2 Um0 ©)

and

L(a.b,(i2) _ G 12)n/2 e—zl([lnyl—ln a-b In X,'+((72/2)]2/2(72)' (10)
o

It is now possible to estimate a, b, and o2 by maximizing the
likelihoods ((9) and (10)) to obtain d,b and 62, maximum like-
lihood estimates (MLE) for the additive and multiplicative error
models respectively. For the additive error model, estimation is
straightforward as it corresponds to nonlinear least squares. a and
b are obtained by minimizing the sum of squared deviations
between observed responses and the underlying scaling model.
Once @ and b have been determined, either the MLE
(V=(1/n)>(y;—ax?) or the bias corrected MLE known as the
sample variance ((n/(n—1))V) can be used to estimate ¢2. For the
multiplicative error model, estimation is slightly more compli-
cated because of the ¢2/2 correction factor. In contrast to the
additive error model, a simple expression for 62, the MLE for the
variance, is not easy to obtain and may not exist, but the estimate
from numerical maximization or the sample variance can be used
to estimate o2. For details on the theory behind maximum
likelihood estimation, standard statistical references (Lindgren,
1993; Casella and Berger, 2002 )provide a mathematically rigorous
treatment of likelihood functions and likelihood-based inference.
For further information on the practical application of maximum
likelihood, Bolker (2008) provides a lucid description of how to
compute maximum likelihood parameter estimates numerically
for ecological models, and Mangel and Clark (1997) provide a very
readable introduction to general likelihood-based approaches in
an ecological context.

3. Assessing the fit of additive vs. multiplicative error models:
an example

With maximum likelihood parameter estimates for the com-
peting models in hand, inference about the fit of models with
different assumptions of error can be made. For the mustelid data
presented in Packard (2009), I fit models with additive and
multiplicative error to obtain maximum likelihood estimates for
the parameters of the scaling relationship, @ and b, as well for the
variance 62 (see Table 1). I then used these parameters to
simulate data from each model. The original data, best fit additive
and multiplicative error models, and the simulated data from
each are plotted in Fig. (1) on both arithmetic and logarithmic
axes. Such an exercise is useful because it allows us to visualize
several important features of the different models. First, we
clearly observe the constant variance of the additive error model
and the error increasing with body size due to multiplicative error
structure on arithmetic axes in panel a, whereas the logarithmic
axes appear to “inflate” the constant variance of the additive error
model in panel b. Second, we get a visual sense of how probable
the observed data are given each of the competing models. And
third, we clearly see that negative values of metabolic rate are
plausible with the additive error model, but inconsistent with the
multiplicative error model. The last point is perhaps more
relevant for determining the biological appropriateness of differ-
ent error models than evaluating model fit. Regardless, from
visual inspection alone, it is impossible to determine which error
model provides a better fit to the data, in part because the



420 Letter to Editor / Journal of Theoretical Biology 317 (2013) 418-421

Table 1

Maximum likelihood parameter estimates, log-likelihood and information statistics for the additive and multiplicative error models for the mustelid data in Munoz-Garcia

and Williams (2005) and discussed by Packard (2009).

Error Model a b 6?2 —2InL AIC AlCc
Additive error model 0.00208 1.49095 240270 199.07 205.07 207.73
Multiplicative error model 2.45960 0.73757 0.16383 177.25 183.25 185.91
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Fig. 1. Mustelid body mass metabolic rate allometry. Blue triangles are the original data from Munoz-Garcia and Williams (2005) analyzed by Packard (2009). Black circles
are simulated data from a the additive error model with MLE estimates for a, b, and 62, depicted by the black line. Red circles are simulated data from the multiplicative
error model with MLE estimates for a, b and 2, depicted by the red line. The dashed red line is the multiplicative error model obtained by Packard (2009). The exact
same data, both observed and simulated are plotted in both panels, but all the simulated data are shown in panel a, whereas only the positive simulated data are shown in

panel b.

different models appear better at different ends of the data range.
When fitting the multiplicative error model, I obtained a different
normalization coefficient for the scaling relationship (a) than
presented in Packard (2009), which is presumably the result of
explicit specification of the associated likelihood.

Although care must be taken when quantitatively comparing
the fit of the two models in question here, it is possible to make a
rigorous likelihood-based evaluation. The basis for comparing the
fit of competing models is —2 In L at the joint MLE. The likelihood
function at the MLE, L(&.B,&z). indicates how probable the
observed data are given the best fit of a particular model and
we want to obtain a model that maximizes the probability of our
data. For nested models, we can perform a likelihood ratio test,
but here models are not nested, nor do they correspond to data on
the same scale. Using information criteria, either AIC (Akaike,
1974) or AlCc (Burnham and Anderson, 2002), the problem of
non-nestedness can be addressed, but to compare such criteria for
models with data on different scales, the probability density
function for the transformed data must be adjusted via a Jacobian
transformation to preserve total probability. This transformation
allows us to compute the likelihood of the transformed data on
the untransformed scale, necessary for making a comparison via
AIC or AICc. In short, we need to transform the density of In y with
MLEs @, b, and 62, to the natural scale, y. For clarity, let z=1Iny.
We see that the multiplicative error model has a normal prob-
ability density function:

1 e a—bx+@?/27%/267

2n6?

i.e, z~N(n &+Bx—(c}2/2),(}2). Let g(y) and G(y) denote the
probability density function and the distribution function on the
natural scale respectively. By definition, G(y)=P(Y <y), and
because In Y is monotonic

f@= 1m

In
Gy)=P(nY<Iny)=FZ<Ilny)= / yf(z) dz 12)

Now we must differentiate with respect to y to obtain the
probability density function on the natural scale:

d . d v B d, _ fdny)
@G‘”‘@./,w f@) dz=fny giny =5,

This indicates that each term in the log-likelihood for the multi-
plicative error model must be divided by y to directly compare AIC
or AlCc for the additive and multiplicative error models.

For the mustelid data in (1) presented in Packard (2009),
I computed -2 In L@@,b,6%), AIC, and AICc for the additive and
multiplicative error models to evaluate which model of error
structure is most consistent with the data. In Table 1, we see that
multiplicative error structure is considerably more consistent
with the mustelid body size-metabolic rate data than additive
error structure. Being able to clearly distinguish between models
with competing error structure is important because the para-
meter estimates lead to substantially different biological inter-
pretation. The scaling exponents b differ by a factor of two for the
two competing models of error structure and the normalization
constants a differ by three orders of magnitude. The interpreta-
tion of the normalization constant in the multiplicative error
model is also influenced by the explicit incorporation of the ¢2/2
correction factor. Importantly, estimates of a from models with
and without the correction factor will differ. However, the explicit
incorporation of the correction factor stems from a desire to
center the error distribution around zero and does not fundamen-
tally alter the underlying likelihood or inference based on it.
Finally, the ultimate goal of fitting scaling parameters will
influence how parameters estimates are used. If knowing the
“true” values of parameters is paramount, then one should focus
on parameters of the model with the best fit and correctly
interpret a. However, if prediction of a response variable is the
highest priority, the model averaging approach described by Xiao
et al. (2011) is a very reasonable option when more than one
model has reasonable support.

13)
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4. Concluding thoughts

At the heart of any statistical analysis is fitting a model of
variability, making it critical to understand how the influence of
variability on deterministic relationships between variables is incor-
porated. Most inference is guided by the notion that the best model of
variability is the one for which the data are most probable, and
because we formulate variability in the form of probability distribu-
tions, it is possible to quantify the probability of particular data given
a specific model. The fact that the approach outlined here and
employed by Xiao et al. (2011) uses underlying probability models
for error to compute the likelihood of observed data makes it
powerful, objective and consistent with core statistical principles.
Because any statistical analysis relies on assumptions about random-
ness in the form of a probability distribution, it is entirely appropriate
for the underlying probability model to play a central role in assessing
the fit of competing models.

This example is not intended to be and should not be taken to
be the definitive approach for fitting allometric models to data,
but rather as an illustration of how one can rigorously evaluate
competing models that may differ considerably in their error
structure. My hope is that employing such an approach in the
study of scaling would allow the data themselves to play the
central role in selecting a model, rather than the preconceived
notions of investigators. The recent work of Xiao et al. (2011) goes
a long way toward establishing appropriateness of log-normal
error for biological scaling relationships, and although they find
strong general support for multiplicative error structure, it would
never be a bad idea to make a direct comparison of model fit for
specific data sets. If a particular model for error is sufficiently well
justified from prior knowledge however, it may not be necessary
to compare models with different error structure, but if model fit
is the primary concern, a rigorous evaluation based on underlying
probability models should be performed.

To close, I will briefly revisit the original exchange between
Packard (2009) and Kerkhoff and Enquist (2009) and subsequent
reiterations of the same points by Packard (2011a, 2011b) and
Packard et al. (2011). Packard’s basic arguments are that log-
transformation gives too much weight to smaller valued observa-
tions, and that the acid test for fitting models is visual inspection.
Explicitly considering the scale transformation, as done here, when
performing a likelihood based comparison renders Packard’s first
argument beside the point. As for the second, if visual inspection is
the ultimate test for model fitting, then notions of how error
influences a functional relationship and inference based thereupon
could be considered irrelevant. Although one must always scrutinize
his or her data to ensure biologically meaningful inference, it is just
as important to assess fit using underlying probability models once
competing models and the appropriate data are identified. Like-
lihood based inference based on underlying probability models
increases consistency and simplicity of inference, in contrast to the
ad hoc approach argued for by Packard. If one is truly interested in
evaluating the fit of competing models that differ only in their error
structure, then one would be well advised to base model compar-
isons on likelihood functions generated by the probability models
specifying the different error structure, not on post hoc subjective
evaluations.
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