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Abstract

We analyse the mean—variance scaling of reproductive output for a previously published forest model. The model relates
individual reproductive effort and pollen limitation to the degree of synchrony in reproduction throughout a forest. We show that
the exponent of Taylor’s power law reflects the degree of synchrony of reproduction because it indicates the covariance of
reproductive behavior. Further, we are able to relate the three components of masting, individual variability, population variability
and synchrony in reproductive output, using Taylor’s power law. Therefore Taylor’s power law can be used as a synoptic index of

masting.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Reproduction in plants ranges from asexual selfing to
obligate sexual fertilization with many species lying
somewhere in the middle of an apparent contiuum. The
particular reproductive life-history strategy of a plant
species can have profound influence on population level
reproductive variability (Satake and Iwasa, 2000, 2002;
Kerkhoff and Ballantyne, 2003). Many tree species
exhibit the synchronous and intermittent reproduction
of trees in a stand, known as masting (Janzen, 1971;
Hererra, 1998; Koenig and Knops, 2000), which results
in more variable population level reproductive output
than constant annual reproduction. Various explana-
tions have been proposed for why masting occurs, the
most widely being that synchronized intermittent seed
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production oversatiates seed predators and allows seeds
to germinate, but that is not our concern here. In this
paper we are more interested in how the three
components of masting, individual reproductive varia-
bility (CVig), population reproductive variability
(CVyop), and synchrony can be linked through a
macroecological (Brown, 1995) pattern, Taylor’s power
law.

Taylor’s power law (Taylor, 1961) is a mean—variance
scaling relationship that characterizes reproductive out-
put for a wide taxonomic range of tree species and is
produced by a mechanistic model of masting (Kerkhoff
and Ballantyne, 2003). The general functional from of
Taylor’s power law is V = aM” where V is variance in
abundance, ¢ is a normalization constant, M is mean
abundance and b is the scaling exponent, or the slope of
the power law.

Here, we extend previous work relating the Satake
and Iwasa (2000) forest model to Taylor’s power law by
presenting a detailed analysis of the mean—variance
scaling patterns generated by the model. In particular,
we analyse mean—variance scaling for individual trees
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and for entire forests in the absence of pollen limitation,
neither of which have been previously analysed. We then
use the results of these analyses of the forest model to
confirm predictions from random variable theory about
the relationship between reproductive synchrony and
Taylor’s power law. Finally, we describe how the
heretofore unrelated components of masting can be
explicitly linked through Taylor’s power law.

2. Models and theory
2.1. A model of reproduction for trees in a forest

The Satake and Iwasa model is based on the energy
budget of an individual tree. If the energy reserve of a
tree is above a critical threshold for a given year, the tree
reproduces. A tree reproduces with the same effort each
time its energy reserve surpasses the critical threshold,
regardless of past reproductive history or the amount of
surplus energy. The magnitude of reproductive effort
coupled with yearly net photosynthetic production
determine whether or not a tree can reproduce in
successive years. Trees that allocate a small to moderate
amount of their energy reserve to reproduction are able
to reproduce annually, especially in productive environ-
ments, whereas trees that allocate a large fraction of
their energy reserves to reproduction often experience
consecutive non-reproductive years. Variability annual
reproduction is also more pronounced in less-productive
environments.

Whole forest patterns of reproductive variability
emerge from the dynamics of individual energy-based
reproduction and the degree of pollen limitation trees
experience. The dynamics of individual reproductive
effort are determined by the fraction of stored energy
that a tree allocates toward reproduction. This fraction,
or depletion coefficient (see below) (Satake and Iwasa,
2000) is directly proportional to the ratio of fruiting to
flowering cost (Satake and Iwasa, 2000). As the ratio of
fruiting to flowering cost, and hence the depletion
coefficient, increases, annual reproduction at the in-
dividual scale becomes more variable. Similarly, when
the effects of moderate to strong pollen limitation are
incorporated into individual reproductive output, an-
nual reproduction at the scale of the entire forest
becomes more variable. Below a critical value, deter-
mined by the ratio of fruiting to flowering cost, trees in
the model reproduce independently which reduces forest
level variability in annual reproduction. Pollen coupling
must be strong with respect to the ratio of fruiting to
flowering cost in order for reproduction to become
synchronized and thus more temporally variable. A high
degree of pollen limitation forces trees to reproduce
simultaneously, and a high ratio of fruiting to flowering
cost prevents trees from reproducing constantly through

time. The combination of strong pollen limitation and
high reproductive cost result in large synchronized bouts
of reproduction.

The non-dimensionalized dynamics of the ith tree in a
forest (Satake and Iwasa, 2000) are given by

. 1 (N

Yit+1) = { Y}g,) H V<0, (1)
—kP()Y()+1 if Yi(5)>0
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describes the degree of pollen coupling. In Eq. (1), Y;(?)
is the energy reserve of the ith tree at time ¢, k is the
depletion coefficient which is proportional to the ratio of
fruiting to flowering cost, f is the coupling strength
(acting through pollen limitation), N is the size of the
forest, and [Y;(9)], is Y;(¢) if Y;(£)>0 and 0 otherwise. If
p =0, P;i(t) disappears from Eq. (1) and all trees
reproduce independently according to Eq. (1) only.
But as f§ becomes more positive, the degree of individual
reproductive coupling increases and individual repro-
duction depends on Eq. (2). The dimensionless Y;(¢) and
k are substituted for (Siy(¢) + Py — Lt)/Ps and a(R, +
1) — 1 respectively in the dimensional form of the model.
In the initial model, S;(¢) is the size of the energy reserve
of the ith tree at the beginning of year ¢, Py is net annual
photosynthetic production, Ly is the critical energy
reserve threshold below which a tree does not reproduce,
R. is the ratio of fruiting to flowering cost and «
determines the proportion of energy excess dedicated to
flowering (see Satake and Iwasa (2000) for a full
explanation of the model). We recast the model so that
energy allocated to reproduction is the quantity of
interest, rather than the amount of energy stored and
then use it to examine the mean—variance scaling of
reproductive output for single trees and for entire
forests. Dimensionless reproductive dynamics R(f) are
given by

if Y;(1)<0,
RUFD=0 kp@rio it vin>o, o

with P;(¢) the same as in Eq. (2).

2.2. Theoretical predictions for mean—variance scaling
exponents

The idea that the exponent of a mean—variance scaling
relationship, or alternatively Taylor’s power law, is
related to the degree of dependence among interacting
units has been alluded to by different authors (Sugihara
et al., 1990; Keeling and Grenfell, 1999) but can be
formalized using random variable theory. By consider-
ing individual reproductive output (R;) a random
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variable and population level reproductive output the
sum of individual reproductive output (3 R)), it is easy
to show that

M pop — N u (4)

and

Vpop =V = NV(RI) + N(N — 1)C01](Ri, R/)

N
DR
i=1

(5
if the R; are identically distributed with mean u and
variance V4. A simple rearrangement of Eq. (5) yields

Vpop = N[ Vind — Covind] + N2 COUind, (6)

where V,,, is the variance of reproductive output for the
entire population and Cov;,y is the average reproductive
covariance between individuals. Eq. (6) is a general
relationship that does not depend on any particular
underlying model, it only assumes that individuals in a
population can be described as random variables. Using
Eq. (6) we predict that for the Satake and Iwasa forest
model, regions of parameter space resulting in asyn-
chronous reproduction should be characterized by an
exponent of one for Taylor’s power law because V,,, is
a linear function of forest size (N) if Covjy = 0.
Similarly, parameter combinations leading to synchro-
nized reproduction, or masting, should generate an
exponent of two because Vp,, is a quadratic function of
N if Covyg = Viwa. We are able to make these
predictions because V;,y and Cov;,y are functions of k
and f in the forest model and are constant once k and f§
are specified. Theory also predicts that mean—variance
scaling of individual reproductive variability in the
model should be characterized by an exponent of two
(Ballantyne, 2005).

3. Power-law scaling of mean and variance for model
forests

3.1. Mean—variance scaling for individual trees

For a particular tree species, k, the depletion
coefficient is assumed to be constant so the only variable
that affects reproductive output is net annual photo-
synthetic production, P,. To asses the impact of
photosynthetic production on individual reproductive
variability, we rescaled R;(¢) in (1) by Py while holding
f =0 in 2. Multiplying R;(f) by P, explicitly reincorpo-
rates the effect of net photosynthetic production because
Satake and Iwasa (2000) originally divided by P, to
obtain the dimensionless Y;(¢). This type of linear
rescaling of dimensionless models yields a slope of two
for Taylor’s power law (Ballantyne, 2005) in general,
and the Satake and Iwasa model is no exception. Mean

reproductive output through time is a linear function of
P, and the variance in reproductive output is a quadratic
function of P, which results is an exponent of two for
Taylor’s power law. For a given value of Py, larger k
results in higher individual variability (CV ;) in annual
reproduction because depletion coefficients of large
magnitude prevent trees from reproducing each year.
The mean—variance scaling of individual reproductive
variability as a function of both k and Py is plotted in
Fig. 1. The exponent of the scaling relationship is clearly
two and the value of k determines the normalization
constant, which is analogous to CV;y. The different
lines correspond to different values of k. Increases in k&
reflect life-history strategies that favor high-energy
investment into reproductive fruits but prevent annual
reproduction. The inability to reproduce annually
results in more variable reproductive output through
time. Thus, CV;,; for trees in the model increases as k
increases.

3.2. Mean—variance scaling for forests in the absence of
pollen limitation

Patterns of reproductive variability become more
interesting at the level of the forest even in the absence
of pollen limitation. For values of k& below one,
individual tree dynamics approach a stable equilibrium
of constant annual reproduction (Satake and Iwasa,
2000) so different initial conditions for individual trees
become virutually irrelevant after initial transient
behavior. Several two-point limit cycles exist but are a
consequence of particular initial conditions (Satake and
Iwasa, 2000). If all trees in a forest exhibit two-point
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Fig. 1. Mean—variance scaling for individual trees with changing net
photosynthetic production Ps. The scaling exponent is two regardless
of k. Increasing k increases individual reproductive variability for a
given value of Py. The slope for all scaling relationships is 2 and the
normalization constants for ascending k values are —2.67, 0.003, 0.08,
and 0.5153.
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limit cycles, any two trees in the forest will either be
completely in phase of completely out of phase. Whether
or not two particular trees are in phase depends only on
their initial conditions. And regardless of phase corre-
spondence, all tree are completely correlated in their
annual reproduction. Trees that are out of phase reduce
the overall magnitude of forest level variance in
reproductive output but do not affect mean—variance
scaling of reproductive variability for the entire forest.
As k increases past a critical value, individual tree
dynamics become chaotic and initial conditions are
paramount. Two trees that exhibit chaotic annual
reproduction are functionally independent if they are
given different initial conditions. Independent reproduc-
tion of individual trees in a forest reduces forest level
variability in annual reproduction.

The different patterns of reproductive output for
entire forests of 5000 trees in constant environments are
plotted in Fig. 2 for different values of k. For small
values of k, reproductive output of the entire forest is
variable and but entirely predictable. The entire forest is
acting as one large tree because the temporal reproduc-
tive patterns of all individual trees are identical. As k
becomes larger, individuals become independent in their

annual reproduction, which decreases temporal repro-
ductive variability at the scale of the entire forest.
Based on the predictions above (Eq. (6)), we expect to
see the shift from correlated reproductive output to
independent reproductive output reflected in the ex-
ponent of Taylor’s power law. Specifically, forests
consisting of trees with subcritical values of & should
exhibit mean—variance scaling with an exponent of two
and trees with supercritical values of k should exhibit
mean—variance scaling with an exponent of one under
constant environmental conditions. The exponent of
Taylor’s power law as a function of k from simulations
of the Satake and Iwasa (2000) model is plotted in
Fig. 3. There is an abrupt transition in the exponent of
Taylor’s power law from two to one as k increases past
1.62, which is the approximate value of k at which any
semblance of periodic individual reproduction shifts to
chaos in the forest model (see Fig. 2 in Satake and Iwasa
(2000)). Trees are functionally independent if k is above
this threshold because of sensitive dependence on initial
conditions. The correspondence of the almost instanta-
neous change of power law slope and change in
qualitative reproductive dynamics confirms the predic-
tion that correlated individuals produce an exponent of
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Fig. 2. Reproductive output for entire forests of 5000 trees. The time series are plotted for different values of &, the depletion coefficient, labeled on
the y-axis. Once k is larger than approximately 1.62, individual trees are virtually independent in reproductive output and whole forest reproductive
variability decreases. The histograms display the distribution of reproductive intensity throughout the forest for the corresponding time series to the

left for different values of k.
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Fig. 3. The slope of Taylor’s power law for a range of k values.
Simulations were performed with forests of 5000 trees all with the same
k value but with different initial conditions. The abrupt transition from
a slope of two to one occurs at approximately k = 1.62. Error bars
represent two standard errors of the mean for 100 simulations at each
value of k.

two for Taylor’s power law and that independent
individuals produce an exponent of one.

3.3. Mean—variance scaling for trees coupled by pollen
limitation

The addition of pollen limitation in the Satake and
Iwasa forest model has little effect if reproductive cost is
relatively high but it acts to correlate individual
reproductive output if it is strong relative to reproduc-
tive cost. When the effects of pollen coupling (ff) are
weak, individual trees become rapidly uncorrelated as
fruiting cost (k) increases, which results in a exponent of
one for Taylor’s power law. As pollen coupling becomes
stronger, clusters of reproductively autocorrelated trees
emerge (Satake and Iwasa, 2000). Further increase in
pollen coupling with respect to the ratio of fruiting to
flowering cost results in synchronous, or completely
correlated, reproduction throughout the forest. The
mean—variance scaling exponents generated by the forest
model are plotted in Fig. 4 as a function of pollen
coupling and depletion coefficient along with a figure
reproduced from Satake and Iwasa (2000) that illus-
trates qualitative forest dynamics for the same para-
meter range. The shift from asynchronous to
synchronous reproduction is less abrupt than the
transition in Fig. 3 which indicates that coupling
through pollen limitation (f>0) blurs the effects of
the depletion coefficient k. However, the exponent of
Taylor’s power law exhibits a pattern similar to the
original Satake and Iwasa figure. This correspondence

between the degree of reproductive correlation and the
exponent of Taylor’s power law is precisely the predicted
relationship from theory (Ballantyne and Kerkhoff, in

prep.).
3.4. Power-law exponent and the Lyapunov spectrum

Satake and Iwasa (2000) use the Lyapunov spectrum
to distinguish regions of qualitatively distinct reproduc-
tive dynamics so the correspondence of the two panels in
Fig. 4 suggests a possible link between the exponent of
Taylor’s power law and the Lyapunov spectrum. A link
between the exponent of Taylor’s power law and the
Lyapunov spectrum would be interesting because
although these two characterizations of dynamics have
very different bases, they ultimately result in the same
qualitative description. The Lyapunov characterization
is based on the correspondence between the number of
positive Lyapunov exponents and the number of clusters
within a forest (Kaneko, 1990; Satake and Iwasa, 2000),
whereas the Taylor’s power-law characterization is
based on observed reproductive covariance.

Linking the Lyapunov spectrum to Taylor’s power
law is potentially quite powerful because it allows one to
relate population level patterns of reproductive output
to individual level reproductive dynamics. In the case of
the Satake and Iwasa (2000) model, the exponent of
Taylor’s power law indicates the threshold in parameter
space at which individual initial conditions begin to
influence patterns of whole forest reproductive varia-
bility. Below a critical threshold, individual trees exhibit
periodic cycles of reproduction and whole forests
reproduce coherently. But above the critical threshold,
individual trees reproduce chaotically, which means that
two trees with different initial conditions are completely
decoupled and therefore, functionally independent.
Fig. 4 illustrates how the stabilizing influence of
individual level chaos on the forest is mediated by
correlation at the population level. Stronger coupling
through pollen limitation (f>0) delays the onset of
asynchronous reproduction, which reduces population
level reproductive variability. The Satake and Iwasa
(2000) model is an example of how chaos can affect
population dynamics in a nonintuitive way. Dynamic
instability at the individual level can lead to increased
population level stability.

4. Discussion

The dynamics of reproduction in forests, as described
the Satake and Iwasa (2000) model, support predictions
that the degree of reproductive correlation among
individuals in a population directly influences the
exponent of Taylor’s power law. For the Satake and
Iwasa model, regions of parameter space that result in
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Fig. 4. The relationship between qualitative dynamics and the slope of Taylor’s power law. The left panel is reproduced from Satake and Iwasa
(2000) to show the qualitative dynamics of forest reproduction. The right panel is the slope of Taylor’s power law for the same parameter space. The
higher degree of variability in the right panel stems from the fact that each parameter combination was simulated only once. Each combination for

the left panel was simulated 100 times and averages are plotted.

asynchronous reproduction produce values of approxi-
mately one for the exponent of Taylor’s power law.
Regions of parameter space that result in synchronous
reproduction, produce exponents of approximately two.
This is exactly the scaling behavior predicted by Eq. (6).
In the absence of synchrony (Cov;y =0), Eq. (6)
predicts an exponent of one and for complete synchrony
(Covjpg = Ving) it predicts an exponent of two. It is easy
to recast these predictions in terms of the general
mean—variance scaling equation ¥V = aM” by substitut-
ing a=V;y/p and b=1 in the former case and
substituting @ = Covyg/p? and b = 2 in the latter.

The exponent of Taylor’s power law also reflects the
transition between different regimes of qualitative
dynamics exhibited by the model. The transition in
reproductive synchrony depicted by the original Satake
and Iwasa phase diagram in Fig. 4 is reproduced by the
change in power-law exponent as a function of the
depletion coefficient & and the degree of pollen limita-
tion f. Within each of the two qualitatively different
regions of parameter space, the exponent of Taylor’s
power law b is virtually invariant but the normalization
constant a varies. This means that increasing the
intensity of reproductive output k£ only increases a and
does not affect b, except when k approaches a critical
value, which is dictated by the degree of pollen
limitation . At this critical value, increasing k
qualitatively alters reproductive dynamics at the level
of the forest and this qualitative change is bourne out by
b. In the case of no pollen limitation, this critical value is
approximately 1.62 (see Fig. 3). In the case of pollen
limitation, the dependence of this critical value depends
on f and is seen in the right panel of Fig. 4. As
increases, the critical value of k also increases. Once k
exceeds the critical threshold set by f, reproduction of

trees in the forest shifts from synchronous to asynchro-
nous and b changes from two to one. Further increases
in k& will only increase a and will not affect b. We have
therefore decomposed variability in reproductive output
for populations into two components that affect mean
variance scaling of reproductive variability in different
ways. Reproductive intensity only affects individual
variability as long as forests are not at the critical
threshold and pollen limitation intuitively changes the
correlation of reproduction among individuals.

In relating the normalization constant and exponent
of Taylor’s power law to individual reproductive
variability and reproductive covariance, we are able to
link the three components of masting previously thought
to be unrelated (Hererra, 1998; Koenig et al., 2003;
Buonaccorsi et al., 2003). And in the specific case of the
(Satake and Iwasa, 2000) model, we can relate the
components of masting to particular life-history para-
meters, namely pollen limitation and fruiting and
flowering costs. Recently, Buonaccorsi et al. (2003)
show that through a one-way ANOVA sum of squares
decomposition, CV,q, CV,,, and synchrony cannot be
related to one another from empirical data. We are able
to link these three components of masting through
Taylor’s power law. Taylor’s power law is the key
ingredient to make this linkage because it explicitly
expresses the relationship between individual variability,
synchrony and population variability. Individual varia-
bility, Vs in Eq. (6) is reflected in the normalization
constant of an empirical relationship (for example « in
V = aMP®), and is predominantly a function of k in the
(Satake and Iwasa, 2000) model (see Fig. (1)). However,
when a forest is at a critical state, k also affects the
correlation of reproductive output (Satake and Iwasa,
2002) and therefore population synchrony. Synchrony is
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always reflected in the scaling exponent b (the extreme
cases of one and two are represented in Eq. (6)) and does
not depend on the underlying mechanics of masting. For
the forest model considered here, synchrony is a
function of f for fixed k. Population variability is
shown to be a function of both individual variability and
synchrony in Eq. (6). An exponent of two reflects
synchrony whereas an exponent of one reflects asyn-
chrony.

Taylor’s power law further describes how CV,,, the
third commonly used measure of masting (Hererra,
1998; Koenig et al., 2003; Buonaccorsi et al., 2003),
scales with population size and is related to synchrony.
Eq. (6) shows the functional dependence of V,,, on
forest size (N), which is a surrogate for the mean since
all trees are identical in their dynamics. Synchronously
reproducing forests (Covyg = Ving) exhibit a quadratic
dependence of V,,, on N and asynchronously reprodu-
cing forests (Covj,y = 0) exhibit linear dependence of
Vpop on N. This result has important implications for
empiricists using CV,,, to describe masting. If b = 2,
CV yop 1s a scale invariant measure of variability but if
b = 1, itis not. This is easily seen by remembering that if
V pop o N?, then

VY, b2
CV])O]) :%O(N/ L

(7
Therefore, b = 1 means that variability of populations
of different sizes is not directly comparable using CV .
However, because b, which reflects the degree of
reproductive synchrony, describes how CV,,, changes
with respect to population size, the necessary transfor-
mation can easily be made. The functional dependence
of CV,y on forest size is critically determined by the
degree of reproductive synchrony in the forest. Thus, the
exponent of Taylor’s power law, which describes
explicitly how V,,, and implicitly how CV,,, scale with
forest size, reflects the degree of reproductive synchrony
in forests. Here we have only explored the extreme cases
of complete synchrony and complete asynchrony and an
in depth discussion of intermediate levels of reproduc-
tive synchrony will appear elsewhere.

Our analysis is an example of how a macro-scale
descriptor, the exponent of Taylor’s power law, can be
related to individual scale dynamics. The exponent of
Taylor’s power law indicates the degree of correlation
among population constituents and here, we are able to
interpret correlation in terms of life-history attributes,
namely pollen limitation and the ratio of fruiting to
flowering cost (a measure of reproductive intensity).
Pollen limitation and reproductive intensity, defined as
the fraction of stored energy allocated to reproduction,
interact to produce different degrees of reproductive
correlation among trees in the Satake and Iwasa forest
model. The reproductive correlation inferred from
Taylor’s power law constrains combinations of pollen

limitation and reproductive intensity to those corre-
sponding to a particular power-law slope. Knowledge of
species-specific life-history allows one to further restrict
parameter space and draw more specific conclusions
about reproductive dynamics.

The exponent of Taylor’s power law is a general
description of correlation in populations and is a robust
link between large-scale patterns of population fluctua-
tions and individual behavior. Although we have only
discussed the relationship between power-law exponents
and reproductive synchrony, power-law exponents can
be related more generally to the dynamics of aggregated
individuals in other systems (Ballantyne and Kerkhoff,
in prep.). Correlation at the individual scale is extremely
difficult or impossible to measure but mean—variance
scaling provides us with an appealing alternative. We
are able to infer the degree of individual correlation
directly from the exponent of Taylor’s power law.
Rescaling ecological systems has proved to be very
difficult but Taylor’s power law is an intuitive metric
with which to predict how the relative magnitude of
reproductive output scales with population size.
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