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Abstract The rate at which catalytic capacity of

microbial exo-enzymes degrades post-exudation will
influence the time during which return on microbes’

investment in exo-enzyme production can be realized.

Further, if exo-enzyme degradation rates vary across
exo-enzymes, microbial investment returns may vary

by element across time. We quantify how aging of two
soil organic matter (SOM)-decaying enzymes

(β-D-cellobioside, BGase; and N-acetyl-β-D-glu-
cosaminide, NAGase) influences enzyme-substrate
Vmax at multiple temperatures (5, 15, 25 °C), and

compute how enzyme age influences relative avail-

abilities of C and N. Both BGase and NAGase
exhibited similar, exponential declines in catalytic

rate with age at 25 °C (0.22 ± 0.02 and 0.36 ± 0.14

d−1, respectively). At 15 °C, NAGase exhibited
exponential declines in catalytic rates with age

(0.79 ± 0.31 d−1), but BGase exhibited no decline.

Neither enzyme exhibited a decline in catalytic rate
over 72 h at 5 °C. At 15 °C, the amount of C liberated

from cellulose and chitin analogues relative to N

increased, on average, by more than one order of
magnitude. The ratio of C:N liberated from the two

substrates remained constant across enzyme age at 25

and 5 °C, but for different reasons: no differences in
decay rate across enzymes at 25 °C, and no observed

decay at 5 °C. Thus, temperature-dependent decreases

of catalytic activity over time may influence microbial
resource allocation strategies and rates of SOM

decomposition. Because the enzyme decay rates we
observed differ considerably from values assumed in

most models, such assumptions should be revisited

when parameterizing microbial process models.

Keywords Exo-enzymes ·

Soil organic matter decay · Enzyme kinetics ·
Microbial process models

Introduction

Ecosystem scientists often use biogeochemical mea-
surements to infer soil organic matter (SOM)

transformations (e.g. Fissore et al. 2008; Craine et al.

2010; Li et al. 2012; Frey et al. 2013; Zhang et al.
2015; Razavi et al. 2016), which are important because

they promote ecosystem productivity and can result in

feedbacks to climate. However, empirical biogeo-
chemical measurements typically integrate many

simultaneous and sometimes competing processes

(Subke and Bahn 2010). As such, it is difficult to
definitively implicate particular processes as underly-

ing causes for observed responses to environmental

change, and their associated rates. For example,
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apparent temperature responses of SOM decay in soils
assessed via exo-enzymatic activities, one type of

biogeochemical measurement (e.g. Wallenstein et al.

2009), may not accurately reflect in situ activities and
rates of decomposition because conditions during exo-

enzyme assays as typically conducted differ substan-

tially from edaphic conditions (Wallenstein and
Weintraub 2008). The approach thus only permits

comparisons of relative activity rates across soils or

environmental conditions. From such measurements,
it is challenging to infer underlying, in situ rates of

enzyme activity and SOM decay.

Baseline measures of key soil processes such as
intrinsic SOM decay rates (the maximum reaction

rate for a given environmental condition; Lehmeier

et al. 2013; Min et al. 2014) are useful because they
permit parsing of maximum, fundamental process

rates from phenomena like the availability of

enzymes and microbial adaptation that also drive
apparent process rates. These baseline rates are the

most useful starting point for parameterizing detailed

process models (Schimel and Weintraub 2003;
Allison 2012; Moorhead et al. 2012; Wieder et al.

2014; Manzoni et al. 2014, 2016; Sierra et al. 2015),

because such models explicitly formulate dynamics
based on intrinsic rates of multiple processes. The

aggregate of these processes of interest ultimately

determine apparent or realized rates. Baseline, intrin-
sic rates of SOM decay also can be used to compute

how environmental conditions such as temperature

and pH regime, sans microbes, influence the land-
scape of resources potentially assimilable by

microbes. The C:N flow ratio, a concept that reveals

the ratio of assimilable C and N as particular
compounds undergo decay (Billings and Ballantyne

2013; Bárta et al. 2014), is particularly useful when

invoked for abiotic, biochemical reactions (Lehmeier
et al. 2013; Min et al. 2014). Parsing the response of

SOM decay to a changing environment in isolation

from microbial communities can provide us with
baseline measures of how the relative availability of

assimilable resources can change solely due to a shift
in environmental conditions, even without changes in

microbial form or function (Billings et al. 2015).

Baseline data is critical for parameterizing models
that explicitly include exo-enzyme pools and their

dynamics.

Though intriguing, work quantifying intrinsic rates
and temperature responses of SOM decay sans

microbes has not yet resolved how exo-enzyme age
influences catalytic rates of distinct enzymes impor-

tant for the release of C- vs. N-liberation from SOM.

This is important because the rate of catalytic decline
sets the timescale of turnover for exo-enzyme pools

in microbial process models, and influences enzyme

pool size (Schimel and Weintraub 2003; Manzoni
et al. 2014, 2016; Allison 2006). Furthermore, the

rate at which catalytic capacity of exo-enzymes

degrades, post-exudation, will influence the time
during which potential return on a microbe’s invest-

ment in exo-enzyme production can be realized. If

declines in exo-enzyme catalytic rate vary with
temperature, microorganisms may need to modify

rates of exo-enzyme production with temperature

fluctuations to maintain balanced resource acquisi-
tion. Intriguingly, if exo-enzyme degradation rates

vary across exo-enzymes, microbial investment

returns may vary by element across time. Variation
in some exo-enzymes’ abilities to attain Vmax across

diverse temperature and pH regimes (Min et al. 2014)

suggests that rates of decline over time in exo-
enzyme catalysis indeed may vary across enzymes.

Given that some exo-enzymes continue to catalyze

decay reactions well past exudation (Skujins 1978;
Boschker et al. 1995; Steen and Arnosti 2011) and

declines in enzyme catalytic rates over time (Asuri

et al. 2007; Yan et al. 2010; Kishore et al. 2012; Kedi
et al. 2013a; Goyal et al. 2014; Tsai and Meyer 2014,

Park et al. 2015; Shirke et al. 2015), we might expect

that declines in exo-enzyme catalytic rates as they
age may be an important factor influencing resource

acquisition of soil microbial communities.

Modelers recognize the importance of formally
describing how microbial resource allocation to exo-

enzyme production can benefit microbial functioning

(Schimel and Weintraub 2003; Allison 2012; Man-
zoni et al. 2014, 2016; Wieder et al. 2014). However,

we lack the knowledge needed to inform models

about diverse enzymes’ catalytic rate declines over
time. Models that consider exo-enzyme catalytic

decline prescribe values derived from specific soil
types that likely are not applicable to all soils (e.g.

Allison 2006), or consider catalytic decline to occur

at similar rates regardless of enzyme identity
(Schimel and Weintraub 2003; Allison 2012; Man-

zoni et al. 2014, 2016). However, if the catalytic rates

of enzymes important for the release of C- vs. N-rich
monomers decline at different rates, resource return
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on investment in enzymes may change over time in
ways important for microbial functioning and,

indeed, may change differently depending on tem-

perature and pH (Lehmeier et al. 2013; Min et al.
2014). We cannot know how to incorporate declines

over time in exo-enzyme catalytic rates in diverse

environments into models, however, without empir-
ical quantification of decay rates of

biogeochemically-relevant enzymes in controlled

environments.
Here, we take a first step toward addressing soil

enzyme longevity by quantifying how the age of two

enzymes important for SOM decay (β-D-cellobioside,
BGase; and N-acetyl-β-D-glucosaminide, NAGase)

influences Vmax at multiple temperatures. We quan-

tified the enzyme-catalyzed reaction rates at three
ecologically relevant temperatures, using freshly

generated enzyme solutions and those aged between

2 and 3 days. We considered the time at which
enzyme solutions were generated via mixing of

purified enzymes and buffer solution to be analogous

to the time at which a soil microbe releases an exo-
enzyme into the soil matrix. We then used the

resulting Vmax values over time to compute how

enzyme age influences the relative availabilities of C
and N.

Given that thermodynamics suggest that biochem-

ical process rates tend to increase with ecologically
relevant temperatures, we predicted that increasing

temperatures would promote faster degradation of

enzymatic catalytic rates for both enzymes assayed.
We also predicted that BGase would exhibit greater

stability with aging, even at warmer temperatures,

than NAGase. This prediction was based on two
concepts. First, enzyme kinetics indicate that while

chitinases such as NAGase can remain stable for up

to 60 min at 60 °C (Parham and Deng 2000; Liang
et al. 2014), β-glucosidase activity remains robust at

50 °C after multiple days (Weiss et al. 2013; Tsai and

Meyer 2014). Also, some glucosidases exhibit half-
lives of [60 days at 37 °C (Goyal et al. 2014), and

greater stability in sea water than phosphatase and
leucine aminopeptidase (Steen and Arnosti 2011).

Second, our previous work suggests that BGase can

maintain relatively high catalytic rates across wider
temperature and pH ranges than NAGase (Min et al.

2014), suggesting that BGase may exhibit greater

stability than NAGase as it ages as well. We observe
a complicated dependence of enzyme catalytic rate

on enzyme age and temperature, which has implica-
tions for how the return on microbial resource

acquisition strategies is likely to change with tem-

perature. The results we present here help us
understand how time since cellular exo-enzyme

exudation can influence microbial realization of any

benefits from the selected strategy at different
temperature, and represent an important first step

towards amassing the empirical evidence needed to

integrate exo-enzyme aging as a mechanistic feature
in theoretical frameworks describing microbial strate-

gies for life.

Materials and methods

Enzyme assays

We quantified fluorescence of 4-Methylumbelliferyl
(MUB)-tagged substrates β-D-cellobioside (MUB-

BG, Sigma-Aldrich, USA) and N-acetyl-β-D-glu-
cosaminide (MUB-NAG, Sigma-Aldrich, USA)
exposed to, respectively, β-glucosidase (BGase; EC

3.2.1.21; Megazyme, Ireland) and β-N-acetyl glu-

cosaminidase (NAGase; EC 3.2.1.52; New England
BioLabs, USA). Because MUB tags fluoresce when

excited by light energy after enzymatic cleavage from

a substrate (Mead et al. 1955), we can use fluores-
cence to measure specific activity of enzymes and

their respective, MUB-labeled substrates (e.g. DeFor-

est 2009). As in Lehmeier et al. (2013) and Min et al.
(2014), we assume the cleavage of MUB from these

substrates approximates the cleavage of glucose and

NAG monomers from cellulose and chitin, respec-
tively, as they are subjected to decay by these same

enzymes. We conducted enzyme assays using freshly

constituted enzymes as well as enzyme solutions that
had aged between 1 h and 66.5 h (BGase) and 1 h and

54 h (NAGase).

For all assays, we dissolved MUB-BG (273 μM),
MUB-NAG (400 μM), and a MUB standard (10 μM;

Sigma-Aldrich, USA) in deionized water, and re-
constituted purified enzymes in 0.2 M sodium acetate

buffer at pH 6.5. Previous experiments revealed that

the substrate concentrations used here resulted in
substrate saturation of these enzymes, and that these

saturation concentrations were appropriate for all

experimental temperatures (Min et al. 2014). For
each assay, we pipetted 50 μl substrate (either MUB-
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BG or MUB-NAG) and 200 μl enzyme solution into
two, eight-row columns of a black, 96-well plate

(Costar, USA). Each well of the 96-well plate

containing an enzyme-substrate reaction thus con-
tained 0.024 units of BGase or 0.16 units of NAGase.

Into additional columns, we pipetted 250 μl of four
categories of controls: quench control (50 μl MUB
solution and 200 μl enzyme solution); enzyme control

(200 μl enzyme solution and 50 μl buffer); substrate
control (50 μl substrate solution and 200 μl buffer);
and standard control (50 μl MUB solution and 200 μl
buffer). Upon completion of all pipetting, we placed

each plate into a Synergy HT microplate reader
(BioTek Instruments, In., USA). Fluorescence was

assessed using excitation and emission wavelengths

of 350 and 450 nm, respectively, for BGase/MUB-
BG and NAGase/MUB-NAG reactions. We mea-

sured fluorescence over time, every minute for the

BGase/MUB-BG reactions and every two minutes for
the generally slower NAGase/MUB-NAG reactions.

We assessed fluorescence for a sufficiently long

period to capture the initial, linear increase in
fluorescence; the slope of that line was considered

Vmax. This protocol follows that of DeForest (2009),

modified according to the amount of enzyme present
in each of our plate wells to permit computation of

Vmax as the specific enzyme activity per unit enzyme

mass. Because our buffer-enzyme solution is free of
mineral and organic compounds, our experiments

reflect enzyme catalytic rates free from the poten-

tially negative influence of enzyme adsorption (Asuri
et al. 2007; Bakshi and Varma 2011).

Ambient laboratory temperature was 25 °C. To

observe reaction rates at two temperatures lower than
ambient (5° and 15 °C), we used protocols detailed in

Lehmeier et al. (2013) and modified in Min et al.

(2014). Briefly, all solutions and material with which
they came into contact were incubated at the desired

temperature in separate incubators. For each assay,

we generated four, identical 96-well plates. A first
plate was placed in the microplate reader, and

immediately after measurement it was placed in the
incubator. Subsequent plates were incubated at the

desired temperature immediately after pipetting. We

measured fluorescence over time by alternating plates
every minute for the BGase/MUB-BG reactions and

every two minutes for the NAGase/MUB-NAG. This

process was repeated until all four identical plates
were measured 6 to 8 times; thus, each Vmax estimate

was derived from 24 to 32 data points. To vary the
age of the purified enzymes from freshly constituted

solutions, enzyme-buffer solutions were incubated for

the desired duration at the desired temperatures prior
to conducting enzyme assays.

Data analyses and calculations

We used Vmax of multiple ages of BGase and NAGase

solutions to address three questions: (1) Do activities

of the exo-enzymes BGase and NAGase decline with
age; (2) Does temperature influence the rate of that

decline; and (3) At a given temperature, does the rate

of decline differ between these two exo-enzymes?
Using R’s nls function (version 3.1.0), we fit

exponential decay functions (Vmax(0)*e
(−λ*t)) to speci-

fic activity rates across time, because of both the
trends in the data and our expectation of exponential

declines in activity over time derived from literature

(e.g. Kedi et al. 2013b; Weiss et al. 2013). We
considered specific exo-enzyme activity as the

response variable, enzyme age a continuous indepen-

dent variable, and temperature and enzyme identity
categorical predictors. This approach permitted us to

estimate parameters for decay rates and assess the

influence of age on each exo-enzyme at each
temperature, and to test if the two exo-enzymes

varied in their rate of catalytic decline at a given

temperature. After initial visual inspection of the
data, we used R’s glht function to perform linear

contrasts and tested if decay rates for BG and NAG

differed at 15 and 25 °C (such contrasts were not
relevant at 5 °C). All data satisfied assumptions of

normality. We considered results to be statistically

significant when P \ 0.05.
We also explored how exo-enzyme aging could

influence the C:N flow ratio, or the relative liberation

of C compared to that of N, as catalytic rates declined
during exo-enzyme aging. As described in full in

Billings and Ballantyne (2013) and employed in

Lehmeier et al. (2013) and Min et al. (2014), the C:N
flow ratio resulting from decline in MUB-BG and

MUB-NAG catalytic rates can be computed if we
consider the rate of these substrates’ decay reactions

and the number of C and N atoms liberated upon

monomer liberation. The consistent use of the MUB
fluorophore liberated from both substrates upon their

decay permits direct conversion of fluorescence into

numbers of atoms liberated. Specifically, the C:N
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flow ratio resulting from decay of MUB-BG and
MUB-NAG can be computed using

dC

dN
¼ VmaxBGaseðTÞ

VmaxNAGaseðTÞ
$ 6þ 8

as described in Lehmeier et al. (2013). The constants

derive from the six assimilable C atoms liberated

upon the release of a glucose monomer from
cellulose, and the eight C atoms and one N atom

liberated upon release of a NAG monomer from

chitin. We used estimates of Vmax(0) and λ derived
from the model fits to estimate the average change in

C:N flow ratio as the two exo-enzymes age at each

temperature. To create confidence envelopes for the
C:N flow ratio over time at each temperature, we

sampled from the distributions of Vmax(0) and λ
associated with fitting exponential decay functions to
generate 100,000 decay trajectories for each enzyme

at each temperature. We then used estimated V(t)

values and quantiles (0.025 and 0.975) to bound the
confidence regions for each temperature over time.

This exercise provides an opportunity to observe how

the landscape of assimilable resources that becomes
available for microbial uptake may vary over time,

well after cellular exudation of these exo-enzymes

has ceased.

Results

Initial BGase activities were significantly different

across the three temperatures assessed, rising with
temperature (Table 1). Initial NAGase activities were

greater at 15 and 25 °C than at 5 °C (Table 1). BGase

activities were generally higher than NAGase activ-
ities (Fig. 1). Both BGase and NAGase exhibited

exponential declines in catalytic rate with age at 25 °
C (P \ 0.0001, P = 0.006, respectively; Fig. 1,
Table 1). BGase decline in catalytic rate with age at

25 °C was greater than at either of the cooler

temperatures (P \ 0.0001 for 25 vs. 15 °C,
P = 0.0001 for 25 vs. 5 °C, Table 1). NAGase

declines in catalytic rate with age did not differ across
temperatures (Table 1). There was not a significant

difference between rates of catalytic decline for

BGase and NAGase at 25 °C (Table 1). At 15 °C,
NAGase exhibited an exponential decline in catalytic

rate with age (H0: λ = 0; P = 0.0100), but BGase

exhibited no such decline, driving a significant T
ab
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difference between the two enzymes in their catalytic
decline (H0: λNAG = λBG; P = 0.0263). Neither

enzyme exhibited a significant decline in catalytic

rate with age over the timescales assessed here at 5 °
C.

At 15 °C, C:N flow ratio estimates derived from

exo-enzyme activities increased from significantly
below that at 25 °C to equal or greater than that at

25 °C after 70 h, due to the decline across time in
NAGase activity and invariant BGase activity (Fig. 2).

At 25 °C, though catalytic rates declined with enzyme

age for both BGase and NAGase, the lack of a
significant difference in decline rates at this temper-

ature resulted in a constant C:N flow ratio as enzymes

aged. At 5 °C, C:N flow ratio estimates also remained
constant, but for a different reason than at 25 °C; at
5 °C, the constant C:N flow ratio reflects the lack of

decline in activity with aging for either enzyme
across the investigated timescale.

Discussion

Quantification of specific enzyme activities (Vmax)
driving decay of biogeochemically relevant substrates

in ideal conditions (Lehmeier et al. 2013, Min et al.

2014) provides a valuable baseline for comparison
with apparent decay rates (Billings et al. 2015). This

is true particularly if purified enzymes adequately
reflect activities of the distinct isozymes that

microbes may generate in different temperature

regimes, and enzyme-enzyme interactions (Billings
and Ballantyne 2013; Bradford 2013). Apparent SOM

decay rates in natural environments (e.g., Sinsabaugh

2010; Tiemann and Billings 2011; German et al.
2012) and apparent temperature sensitivities of exo-

enzymes responsible for SOM decay (e.g. Wallen-
stein et al. 2009; Li et al. 2012; Razavi et al. 2016) all

reflect potential rates modified by restrictions on

substrate availability, varying enzyme production
rates and any diffusion limitations of substrate and/

or enzyme (Sinsabaugh and Follstad Shah 2012). In

the current work, we demonstrate yet another mech-
anism by which apparent rates of SOM decay, and

apparent temperature sensitivities of SOM decay,

may also deviate from their potential in the natural
environment: age-dependent decreases in exo-en-

zyme catalytic rates. Quantifying this decrease

provides a fundamental starting point for parameter-
izing coupled microbial-enzyme process models.

Enzyme aging and specific activities

The Vmax values of freshly reconstituted enzyme

solutions (i.e. near-zero values on X-axis in Fig. 1)

were obtained under similar conditions as those

Fig. 1 Specific enzyme
activities (Vmax) for β-
glucosidase (BGase) and β-
N-acetyl glucosaminidase
NAGase) at the specified
temperatures as enzyme-
buffer solution aged.
Decline in catalytic rate is
statistically significant for
BGase at 25 °C, and for
NAGase at 25 and 15 °C,
represented by plotted
functions. See Table 1 for
parameter estimates and
significance
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observed in related work (Lehmeier et al. 2013; Min
et al. 2014), and yet were more variable than the

values reported in those investigations. We cannot

explain this enhanced variability. However, the
detectable instability of both enzymes as they aged

at 25 °C, and of NAGase at 15 °C, points to several

phenomena with potentially profound implications
for SOM decay and microbial abilities to acquire

resources. First, the generally greater catalytic rate of

BGase compared to NAGase means that even with
similar rates of catalytic decline over time at 25 °C

(see similar parameter estimates across enzymes at
25 °C, Table 1), the absolute decrease in the rate of

monomer liberation from cellulose per unit time is

greater than the absolute decrease in monomer
cleavage from chitin (Fig. 1). Thus, the absolute

amount of glucose-C potentially provided to a

microbe by BGase experiences a much larger decline
over time than the absolute amount of NAG-borne C

and N, per unit time. Second, though the decline in

BGase at 25 °C is impressive in absolute terms, its
stability at 15 °C is consistent with the idea that

BGase can remain stable in a wider range of

environmental conditions (Min et al. 2014); this
may reflect the ubiquity of glucose-based metabolism

across diverse taxa. Assays using yet-older enzyme-

buffer solutions are needed to quantify the (presumed
eventual) catalytic decline of BGase at 15 °C and of

both enzymes at 5 °C.
A third emergent feature illuminated by this work

is reflected in the rate constants’ values describing

these two enzymes’ catalytic decline as they aged.

These constants, and their values in different tem-
perature regimes, provide constraints for trait-based

theories of microbial functioning. For example,

Schimel and Weintraub (2003) employ a decay
constant for exo-enzymes (Kl) of 0.05 d−1 in their

model linking exo-enzyme activity to soil microbial

C and N limitation. This value is also used by
Manzoni et al. (2014) for their kE term, the enzyme

deactivation rate. The data presented here suggest

that, in the absence of any other confounding factors,
0.22 d−1 (0.009 h−1*24) and 0.36 d−1 (0.015 h−1*24)

are reasonable baseline estimates of rate constants

describing the decline in exo-enzyme catalytic rates
over time for BGase and NAGase, respectively, at

25 °C (Table 1). At 15 °C, the decay constant for

NAGase in an environment with negligible enzyme
adsorption appears to be 0.79 d−1 (0.033 h−1*24).

Although adsorption can protect exo-enzymes from

microbially-induced degradation in soils (Nannipier
et al. 1982; Monsan and Combes 1988; George et al.

2005; Kedi et al. 2013b; Rosas et al. 2011; Park et al.
2015) and may mitigate catalytic decay rates in

natural environments, these parameter estimates

suggest that current models of microbial resource
acquisition and growth employ enzyme deactivation

rates far slower than what potentially can occur.

Though current model estimates may represent
reasonable phenomenological rate constants for some

Fig. 2 The C:N flow ratio (ratio of microbially assimilable C
and N resources) resulting from the release of glucose and
N-acetylglucosamine monomers from cellobiose and chitin,
respectively, as these substrates decompose via the catalysis
induced by aging enzymes β-glucosidase (BGase) and β-N-
acetyl glucosaminidase (NAGase), at 5, 15, and 25 °C (dashed,
dotted, and solid lines, respectively). Shaded regions (light
blue, 5 °C; green, 15 °C; orange, 25 °C) represent confidence
envelopes generated from sampled distributions of parameters
describing fitted exponential decay functions. Y-axis is log
scaled to enhance separation between polygons for clarity.
Note that C:N flow ratio is constant at 5 °C due to a lack of
catalytic decline rate with enzyme aging at that temperature
across 70 h; because of the lack of an effect of either enzymes’
age at 5 °C, we have overlaid this light blue rectangle by the
other temperatures’ polygons. At 25 °C, rates of catalytic
decline with enzyme aging were not significantly different
across enzymes, but the C:N flow ratio at 25 °C appears to
increase as an arithmetic consequence of small, non-significant
differences in catalytic declines with time between BGase and
NAGase. At 15 °C, C:N flow increases significantly across
enzyme age. See text for complete description of confidence
envelope generation and C:N flow ratio calculations. (Color
figure online)
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soils, discrepancies between baseline rates presented
in the current study and those realized in soils remain

unclear. These data also highlight that temperature

can play an important role not just in accelerating
SOM decay, but in differentially augmenting the rate

at which enzymes’ deactivation can occur. Thus, not

only do current models of microbial growth likely
employ underestimates of exo-enzyme decay con-

stants, but they do not reflect the meaningful variation

with temperature across exo-enzymes in those
constants.

Enzyme aging and C:N flow ratios

Temperature governed the processes driving C:N

flow ratio behavior as these exo-enzymes aged, and

thus changes in resource availability of potential
ecological significance. The constant C:N flow ratio

at 25 °C, even as BGase and NAGase catalytic rates

both decline with exo-enzyme age, reflects the lack of
a meaningful difference in the rate at which these

enzymes degraded over time. These data suggest that

investigators have reasonable justification for simpli-
fying at least one feature of microbial resource

acquisition: for these two exo-enzymes at 25 °C, the
degradation of catalytic rates across time can be
considered the same. In contrast, the constant C:N

flow ratio at 5 °C reflects the lack of decline in

catalytic rate with enzyme age at that temperature.
Contrasting with both of these scenarios, the increase

in C:N flow ratio at 15 °C reflects unchanging BGase

activity with exo-enzyme age and declining NAGase
activity, and the resulting continued availability of

glucose-C with a simultaneous decline in NAG-N and

NAG-C.
These changes in C:N flow ratio across time at 15 °

C represent a change in the landscape of microbially

assimilable resources. To the extent that changes in
C:N flow ratio occur in a natural environment,

microorganisms must adapt to such shifts in resource

landscape, either by exhibiting stoichiometric plas-
ticity (Billings and Ballantyne 2013) or by modifying

their decomposition strategy to maintain a set supply
rate of different elements (Moorhead et al. 2012). For

example, in an environment where C and N are

derived from BGase and NAGase activities, microbes
at 15 °C must cope with a large increase in the C:N

flow ratio ~70 h post-exudation of these enzymes.

One strategy for maintaining a supply of assimilable

N may be to augment their NAGase production rate.
Importantly, variation in a C:N flow ratio over time

evidently can result solely from the distinct ways in

which these two enzyme-substrate reactions respond
to enzyme age at different temperatures, and the C

and N available after liberation of monomers, in

isolation of any changes in the identity of active
microorganisms or their decomposition strategies.

In previous work, we have outlined some of the

ecological ramifications of altered C:N flow ratios
resulting from substrate decay in a changing temper-

ature regime (Billings and Ballantyne 2013;

Lehmeier et al. 2013) and with changing pH and
temperature (Min et al. 2014). For example, a

declining C:N flow ratio with warming, as computed

from observed decay rates of cellulose and chitin
analogs (Lehmeier et al. 2013), may help explain

unexpected declines in response of microbial CO2

efflux after prolonged exposure to experimental
warming (Peterjohn et al. 1994; Oechel et al. 2000;

Luo et al. 2001; Rustad et al. 2001; Melillo et al.

2002; Eliasson et al. 2005), particularly at pH 7.5
(Min et al. 2014). Data in the current study highlight

another potential mechanism that could drive appar-

ent temperature sensitivities of soil CO2 efflux in
cooler (e.g. 15 °C) vs. warmer (e.g. 25 °C) temper-

atures: given that C:N flow ratio is modified by aging

BGase and NAGase in a temperature-dependent
manner, microbial communities may experience

relative C limitation at the warmer temperature

(Fig. 2) and not exhibit a predicted CO2 temperature
response.

Conclusions

We provide fundamental, temperature-influenced
rates of catalytic decline for two exo-enzymes of

biogeochemical interest to those empiricists and

modelers investigating SOM decay. The data highlight
a currently underappreciated mechanism—exo-en-

zyme aging—likely contributing to variation in
apparent exo-enzyme activities. Like potentially

changing identity of active microbial groups, stoi-

chiometric plasticity, and altered substrate availability
and microbial decomposition strategies, exo-enzyme

aging can influence some of the biogeochemical fluxes

critical to understand for accurate projection of the
resource landscape of soil microbial communities,

170 Biogeochemistry (2016) 131:163–172

123

Author's personal copy



microbial CO2 production throughout soil profiles, and
Earth’s SOM reservoirs. These data provide baseline

data to which we can compare variation in catalytic

rates over time as derived from environmental sam-
ples. Though exo-enzyme adsorption may retard

declines in catalytic rates over time in natural settings,

these data provide a starting point from which we can
base parameter estimates in models of microbial

resource acquisition and growth; these data suggest

that rate constants in microbial process models
currently may represent underestimates of declining

exo-enzyme catalytic rates over time.
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