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ABSTRACT

Question: The exponent of Taylor’s power law has an apparent upper limit of two. What
might produce that limit?

Method: I calculate Taylor’s power law for data generated by three well-known single-species
population dynamics models.

Result: Rescaling dimensionless population growth equations leads to the upper limit of
two. Empirical values less than two reflect a departure from determinism. This will allow
improved understanding of the combined effects of deterministic dynamics and stochasticity
on population fluctuations and long-term stability.

Keywords: deterministic dynamics, population growth, scaling, stochasticity,
Taylor’s power law.

INTRODUCTION

Taylor’s power law is a well-documented relationship between the mean and variance in
abundance for ecological populations. To generate Taylor’s power law for empirical data,
one plots log transformed variance in abundance as a function of log transformed mean
abundance. Taylor first made these types of plots (Taylor, 1961) and the relationship has
subsequently been documented for larger data sets and a wide range of taxa (Taylor et al., 1978,

1983; Taylor and Woiwod, 1980; Taylor, 1986; Maurer and Taper, 2002; Kerkhoff and Ballantyne, 2003). Taylor’s initial
plots were for spatial data but temporal data have also been well characterized by power law
scaling between the mean and variance of abundance (Taylor and Woiwod, 1980; Anderson et al., 1982;

Taylor et al., 1983; Taylor, 1986; Perry, 1994; Maurer and Taper, 2002; Kerkhoff and Ballantyne, 2003). For almost all
species, the exponents of Taylor’s power law from temporal data fall in the interval between
one and two with many towards the extremes (Anderson et al., 1982; Keeling, 2000).

The existence of Taylor’s power law for temporal data has prompted population
ecologists to link population dynamics to the empirical patterns of abundance described
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by the power law. The first models that included population dynamics did so only in the
context of spatial processes (Iwao, 1968; Taylor and Taylor, 1977; Taylor and Woiwod, 1980; Taylor, 1981), but
later studies have focused on demographics and their relationship to Taylor’s power law
(Anderson et al., 1982; Perry, 1994; Keeling, 2000; Maurer and Taper, 2002; Kilpatrick and Ives, 2003). However, the
demographic models that have been related to Taylor’s power law are, to a large degree,
stochastic and include spatial movement or competition. Here, I show that a large class of
deterministic population growth models for isolated single-species populations generate
Taylor’s power law with an exponent of two.

MODELS

Single-species models of population dynamics usually take one of two forms to reflect the
reproductive biology of the species, discrete or continuous in time. I consider, in detail, two
common discrete-time population growth models, the familiar logistic map

Nt + 1 = rNt(1 − Nt/K) (1)

and the Ricker map (Ricker, 1954)

Nt + 1 = Nte
r(1 − Nt/K) (2)

and one continuous time model, the lagged logistic growth model

dN

dt
= rN�1 −

N(t − τ)

K � (3)

first proposed by Hutchinson (1948). In all models, r is the intrinsic rate of population
increase and K is the carrying capacity for the environment in which the population lives. In
the continuous-time model, τ is the time delay of density dependence. All three models have
been well studied in the ecological and mathematics literature because of the rich dynamics
they exhibit (Jones, 1962; May, 1973; Holmgren, 1996; Kot, 2001; Murray, 2002). Most notably, as r increases,
all of the models exhibit periodic solutions or limit cycles that are independent of initial
conditions. There has been considerable debate in the literature as to how prevalent popula-
tion cycles are, but Turchin (2003) provides compelling evidence for the existence of cycles in
empirical populations. It is therefore reasonable to first study the mean–variance scaling
properties of the simplest population models that produce cycles. And it is necessary that
models exhibit sustained fluctuations in the current treatment so temporal variance can be
calculated.

For low rates of population growth, mean abundance is a suffcient descriptor of the
dynamics of the three models, but with higher population growth rates, the presence of
fluctuations in abundance necessitates an additional descriptor for completeness, namely
the variance. Although these models are purely deterministic and the amplitude of periodic
fluctuations can sometimes be calculated (see Appendix), the variance of a time series yields
essentially the same information. And because Taylor’s power law is a relationship between
the mean and variance of empirical data, I followed convention and calculated the mean
and variance of time series generated by the above models. Additionally, once chaos occurs,
the calculation of an amplitude is not possible. For completeness, however, I calculated the
amplitude and the mean for the logistic map in the Appendix to show that the ratio of
amplitude to mean is independent of K.
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DATA

For the models considered here, growth rates below specific thresholds (r < 3 for the logistic
map, r < 2 for the Ricker map, and rτ < π/2 for lagged continuous logistic growth) result in
monotonic approach or damped oscillations towards a stable equilibrium, but above these
thresholds all models produce sustained fluctuations (for details, see May, 1973; Kot, 2001). There-
fore, it only makes sense to calculate variance for model output generated with r above the
critical threshold for oscillatory dynamics. Otherwise, there is no systematic increase in
variance of abundance with an increase in mean abundance because there is no variability
at all.

To generate data for which Taylor’s power law could be calculated, I performed simula-
tions of the three aforementioned models with K ranging from 100 to 10,000 and r ranging
from 3.1 to 3.9 (so all models produced sustained oscillations). For each combination of
r and K, I iterated models (1) and (2) for 1000 time steps/units and simulated (3) using a
linear spline approximation described by Hoppensteadt (1993) with τ = 1. I then calculated
the mean and the variance of the last 100 time steps for each simulation to eliminate the
effects of transient dynamics. The log transformed means and variances for each simulation
are plotted in Fig. 1.

Although there are slight quantitative differences associated with the dynamics of the
models, the qualitative patterns in Fig. 1 are the same. All three models generate Taylor’s
power law with an exponent of two when r is large enough to produce indefinite oscillations.
The differences in the normalization constants (analogous to the y-intercept) of the power
laws reflect different population growth rates. Growth rate has a greater influence on the
normalization constant for the logistic map than for the Ricker map or continuous logistic
growth with a time lag. Coefficients of variation of dimensionless growth equations deter-
mine the normalization constants of Taylor’s power law in general (see below) and the
amplitude to mean ratio for a particular r value determines the normalization constant,
when the ratio can be calculated (see equation A5 in the Appendix). In Fig. 2, the amplitude
to mean ratio for period two orbits of the logistic map is plotted as a function of r. Clearly,
increasing r increases the normalization constant of Taylor’s power law.

Fig. 1. Taylor power laws for simulated data from the logistic map, the Ricker map and the con-
tinuous logistic equation with a time lag. Growth rates (r) correspond to the same symbols in all three
panels (3.1 = �, 3.5 = *, 3.9 = �). The slopes of the least squares regressions for simulations with
growth rates (3.1, 3.5, 3.9) are (2.003, 1.9995, 2.0208) for the logistic map, (2.0014, 1.9943, 1.9898) for
the Ricker map and (2.000, 1.9927, 2.0059) for the lagged continuous logistic equation respectively.
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VARIANCE SCALING

The fact that these particular population growth models all generate power laws is compel-
ling, but a more general statement about population growth is possible; a population growth
process that yields a dimensionless description through a linear change of variables will
generate Taylor’s power law with an exponent of two if fluctuations in population size
persist and the population growth rate remains constant through time. This is a con-
sequence of the properties of mathematical expectation. To produce populations with dif-
fering carrying capacities, one multiplies a dimensionless population growth equation by
the appropriate scale factor (κ) to obtain a specific carrying capacity. For example, to rescale
the dimensionless logistic map, Xt + 1 = rXt(1 − Xt) in which Xt = Nt /κ, to a particular carrying
capacity κ, Xt is multiplied by κ to recover Nt. Subsequent calculation of the mean (E(N))
and the variance (V(N)) of the population trajectory introduce the scale factor in a linear
fashion (E(κN) = κE(N)) and a quadratic fashion (V(κN) = κ

2V(N)) respectively. The
variance of a population growth process meeting the above assumptions scales as a function
of the mean of the process in the following way:

V(κN) = κ
2V(N) = [E(κN)]2 V (N)

[E(N)]2 (4)

where N is the number of individuals in the population. Therefore, a linear increase in mean
abundance results in a quadratic increase in variance of abundance with the normalization
constant of Taylor’s power law given by the square of the coefficient of variation
(CV = √V(N)/E(N)) of the dimensionless population growth equation. This is seen by
taking logarithms of both sides of (4) to get

log[V(κN)] = 2log[E(κN)] + log�V (N)

E(N)2� (5)

Fig. 2. Amplitude to mean ratio (equation A5) for the logistic map (equation 1) changes as a function
of population growth rate r. Period two orbits occur for r > 3. Higher growth rates result in larger
fluctuations in abundance.
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In (5), κ is the only parameter so long as the dimensionless growth process does not
change (E(N) and V(N) constant). Taylor’s power law generated by models that fit the
above criteria will have a constant exponent of two throughout the entire range of mean

abundance. The quantity log�V(N)

E(N)2� is independent of κ and determines the normalization
constant.

DISCUSSION

The value of two for the exponent of Taylor’s power law is, in a sense, a null expectation
that has been proposed before, albeit on different grounds. Gillis et al. (1986) showed that
Taylor’s power law with an exponent of two is a direct consequence of the ideal free
distribution proposed by Fretwell and Lucas (1970), but this argument is based on the
movement of individuals between patches, not on any population growth process. Anderson
et al. (1982) and Keeling (2000) have shown that two is the upper limit for the slope of Taylor
power laws generated by population growth models with some degree of stochasticity and
some spatial dynamics. Kilpatrick and Ives (2003) have also concluded from models of
interspecific competition that two appears to be an upper limit for the exponent of Taylor’s
power law. I have shown that Taylor’s power law with an exponent of two is the result of
purely deterministic population dynamics without any spatial movement. This analysis also
suggests that the exact form of density dependence operating in a population may not
be extremely important because all deterministic population growth models that can be
non-dimensionalized generate Taylor’s power law with an exponent of two.

The fact that two is more of an upper limit for the exponent of both empirically and
theoretically derived power laws (Taylor and Woiwod, 1980; Keeling, 2000; Maurer and Taper, 2002; Kilpatrick

and Ives, 2003) suggests that deterministic density dependence, stochasticity and movement are
conspiring to generate the mean to variance ratios observed for real-world populations.
Some empirically calculated power laws have exponents slightly greater than two, but it
is unclear whether this is the result of sampling error or is indicative of processes of deeper
significance. As of now, I am in general agreement with other authors (Anderson et al., 1982;

Keeling, 2000; Kilpatrick and Ives, 2003) that two is an intuitive upper limit for the exponent of
Taylor’s power law because of strong theoretical support and insufficient empirical evidence
to reject a large body of theory.

In general, Taylor’s power law with an exponent of two implies that population
dynamics are invariant with respect to carrying capacity (Keeling, 2000). This can be seen by
noting that the coefficient of variation of abundance equals one irrespective of mean
abundance,

CV =
√V(N)

E(N)
∝

√E(N)2

E(N)
= 1 (6)

and that the ratio of amplitude to mean is independent of K (see Appendix). Thus, when the
exponent of Taylor’s power law is two, we are justified in removing mean abundance from
the discussion of population fluctuations (Keeling, 2000). This means that for deterministic
models of the sort discussed here, the non-dimensional growth form captures all possible
dynamics. Therefore, an exponent of two for Taylor’s power law generated by empirical data
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may indicate that the population growth is invariant with respect to carrying capacity or
abundance. This is significant because it means that the relative magnitude of fluctuations in
abundance is not affected by mean population size. In other words, there is no buffering
against population decline or increased stability with increased abundance.

If deterministic population dynamics are thought to be well described by a model that
generates Taylor’s power law with an exponent of two, then an exponent of less than two for
an empirically derived power law indicates that population dynamics depend on population
size. Stochastic effects and the intrinsic rate of population increase may both be influenced
by abundance. Keeling (2000) has shown that the form of stochasticity determines, to a large
degree, the exponent of mean to variance ratios for models incorporating stochasticity.
However, the influence of stochasticity is only realized for a limited range of mean
abundance. The underlying deterministic density dependence is more influential over the
remaining range of mean abundance (Keeling, 2000). In contrast, purely deterministic dynamics
of the sort presented here have constant influence for the entire range of mean abundance.
This tells us that we do not fully understand mean–variance scaling, but also that
the interplay between determinism and stochasticity is critical for our understanding of
population fluctuations.
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APPENDIX

For any discrete map f(x), fixed points are calculated by solving f(x) = x. Values for period two orbits
are calculated by solving f 2(x) = x. Higher-order orbit values are calculated similarly by solving
f n(x) = x. For the logistic map, f 2(x) is given by

r2N(1 − N/K)�1 −
rN(1 − N/K)

K � (A1)

Solving (6) for values N* of the period two orbit yields the non-trivial solutions

K(r − 1)

r
(a)

N* =











K

r �1

2
+

r

2
+

√r2 − 2r − 3

2 � (b) (A2)

K

r �1

2
+

r

2
−

√r2 − 2r − 3

2 � (c)

The first solution (a) is a fixed point which is obviously a two-orbit solution and the second two
solutions (b and c) are the non-degenerate two-orbit values. Their difference

K

r
√r2 − 2r − 3 (A3)

is the amplitude of the period two orbit. The mean value of the trajectory through time is

K
(r + 1)

2r
(A4)
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Therefore, the ratio of amplitude to mean is

2√r2 − 2r − 3

(r + 1)
(A5)

This ratio is an increasing function of r and is analogous to the coefficient of variation. It is obviously
independent of K, so relative fluctuations are independent of population size as discussed in the text.
The same result holds for higher-order periodic orbits as well.
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