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Abstract

Aquatic ecologists have recently employed dynamic models to estimate aquatic ecosystem metabolism. All

approaches involve numerically solving a differential equation describing dissolved oxygen (DO) dynamics.

Although the DO differential equation can be solved accurately with linear multistep or Runge–Kutta meth-

ods, less accurate methods, such as the Euler method, have been applied. The methods also differ in how dis-

crete temperature and light measurements are used to drive DO dynamics. Here, we used a representative

stream DO data set to compare the metabolism estimates generated by multiple Euler based methods and an

accurate numerical method. We also compared metabolism estimates using linear, piecewise constant and

smoothing spline interpolation of light and temperature. Using observed DO to calculate DO saturation defi-

cit in the Euler method results in a substantial difference in metabolism estimates compared to all other

methods. If modeled DO is used to calculate DO saturation deficit, the Euler method introduces smaller error

in metabolism estimates, which diminishes as logging interval decreases. Linear and smoothing spline inter-

polation result in similar metabolism estimates, but differ from estimates based on piecewise constant inter-

polation. We demonstrate how different computational methods imply distinct assumptions about process

and observation error, and conclude that under the assumption of observation error, the best practice is to

use the accurate numerical method of solving differential equation with a continuous interpolation of light

and temperature. The Euler method will introduce minimal error if it is paired with frequently logged data

and DO saturation deficit is computed using modeled DO.

For well over a half century, aquatic gross primary pro-

duction (GPP) and ecosystem respiration (ER) have been esti-

mated from open–water dissolved oxygen (DO)

measurements. H. T. Odum first proposed using diel changes

in DO concentration to parse the autotrophic and heterotro-

phic components of whole ecosystem metabolism (Odum

1956). He realized that after accounting for air–water

exchange, often referred to as reaeration, DO changes at

night are solely due to ER and DO changes during the day

reflect the difference between DO production from GPP and

DO consumption via ER. However, accurately accounting for

reaeration, which is critical for obtaining accurate estimates

of GPP and ER, is far from trivial. Since Odum’s seminal con-

tribution, the open channel method has been refined and

improved, primarily in efforts to accurately account for rea-

eration. One approach to account for reaeration is to esti-

mate the reaeration coefficient using a certain portion of the

diel DO curve. For example, Hornberger and Kelly (1975)

proposed regressing night time changes in DO on DO satura-

tion deficit as a way to calculate the reaeration coefficient

(the slope of this regression) simultaneously with ER (the

intercept of this regression). Chapra and Di Toro (1991)

showed that the reaeration coefficient is functionally linked

to the time lag between solar noon and maximum DO defi-

cit and proposed the so called delta method to estimate the

reaeration coefficient from this functional relationship.

Another approach is predicting reaeration coefficients from

physical characteristics of the environment such as stream

channel morphology and velocity (Tsivoglou and Neal 1976;

Melching and Flores 1999; Raymond et al. 2012), or wind

speed (Wanninkhof 1992; Clark et al. 1995; Cole and Caraco

1998; Crusius and Wanninkhof 2003; Jonsson et al. 2008). A

third approach is to experimentally determine reaeration

coefficients using gas tracer injections (Wanninkhof 1992;
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Marzolf et al. 1994; Cole and Caraco 1998; Young and

Huryn 1998) or floating chambers (Marino and Howarth

1993; Kremer et al. 2003; Borges et al. 2004).

However, all approaches have shortcomings. Estimating

reaeration coefficients based on characteristics of a certain

portion of the diel DO curve does not account for the tem-

perature dependence of GPP, ER and reaeration. Predicting

reaeration coefficients based on physical characteristics of

the environment is often site and time specific, and cannot

be applied generally. Experimentally measuring reaeration

coefficients is time consuming and single measurement does

not represent the reaeration coefficient over time due to its

dependency on the flow conditions. The location where rea-

eration coefficients are measured also may not necessarily

correspond to the area driving measured DO concentration.

In addition, the relationship between reaeration coefficients

of different gases is not theoretically well defined in the pres-

ence of bubbles. Failure to accurately estimate reaeration can

easily lead to biased GPP and ER estimates.

To tackle the problem of accurately accounting for reaera-

tion, several researchers recently proposed the application of

dynamic models to estimate aquatic ecosystem metabolism

(Van de Bogert et al. 2007; Hanson et al. 2008; Holtgrieve

et al. 2010; Riley and Dodds 2013; Solomon et al. 2013;

Grace et al. 2015). Although it has its own challenges, such

as difficulty in separating GPP, ER and reaeration in high tur-

bulent systems (Demars et al. 2015), the dynamic modeling

approach has several advantages compared to the traditional

methods based on oxygen budgets (Holtgrieve et al. 2015). It

allows simultaneous quantification of reaeration, GPP and

ER, and enables the mechanistic characterization of GPP, ER

and reaeration that explicitly captures the environmental

dependency of these processes. Additionally, with assump-

tions about error distribution, confidence can be ascribed to

model parameters and GPP and ER estimates. Furthermore, if

a Bayesian approach is taken, prior knowledge about parame-

ters related to GPP, ER and reaeration can be formally

incorporated.

Fitting a dynamic model to observed DO data usually

involves the following steps:

1. Formalize the differential equation describing DO changes

over time.

d O2½ �
dt

5P I;Tð Þ2R Tð Þ1K Tð Þ O2½ �sat2 O2½ �
� �

(1)

Here, [O2] is DO concentration. [O2]sat is the DO concen-

tration at saturation, which can be calculated based on

barometric pressure and temperature. P(I,T), R(T) and K(T)

are GPP, ER and reaeration coefficient, respectively. Often,

we describe GPP as a function of light (I) and temperature

(T), ER as a function of T, and reaeration coefficient as a

function of T. Parameters in the functions P(I,T), R(T) and

K(T) are the parameters to be estimated in the model.

2. For a given set of parameters, solve Eq. 1 to obtain the

modeled DO concentration (Fig. 1a).

3. Calculate the differences between modeled and measured

DO concentration. The differences between modeled and

measured DO concentration are often assumed to be inde-

pendent and identically distributed normal random varia-

bles. With such a distributional assumption, the

likelihood for a given set of parameters in the differential

equation can be computed.

4. Either find the maximum likelihood estimates of parame-

ters by iterating step 2–3 to find the parameters that maxi-

mize the likelihood, or employ a computational Bayesian

approach to obtain the posterior distributions of the

parameters.

6.
1

6.
3

6.
5

6.
7

0 30 60 90

D
O

  (
m

g 
L

1 )

a

0 30 60 90

b

Time (min)

0 30 60 90

c

Fig. 1. Schematics of different methods of solving the differential equation for dissolved oxygen dynamics. (a–c) are illustrations of the accurate
method, Euler method and the stepwise method, respectively. Vertical dashed lines indicate the difference between measured and modeled DO con-
centration (a, b) or DO concentration changes between successive measurements (c). Points in the graphs are measured DO concentration. Lines and

arrows represent the modeled DO concentration (a, b) or DO concentration changes between successive measurements (c). DO data plotted in this
figure are a subset of the data used in this article.
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Solving Eq. 1 analytically is usually infeasible with the typi-

cal GPP, ER and reaeration formulations unless specific func-

tional forms are used to approximate daily light and

temperature (Reichert et al. 2009). Thus, numerical methods

are usually necessary. Conceptually, numerical methods

approximate the solution by discretizing continuous time

into steps. A numerical method starts from an initial point

and moves a short step forward in time to find the solution at

the next time point. Numerical integration using Runge–Kutta

methods or linear multistep methods can accurately simulate

Eq. 1. The accuracy comes from using derivatives at several

intermediate steps (Runge–Kutta methods) or the linear com-

bination of derivatives at several previous time steps (linear

multistep method) to find the solution at the next time point.

For example, for a differential equation dy tð Þ=dt5f tð Þ, a sec-

ond order Adams method approximates the solution as

y t1Dtð Þ5y tð Þ1 3
2 f tð Þ2 1

2 f t2Dtð Þ
� �

Dt. A second order backwards

differentiation formula approximates the solution as

y t1Dtð Þ5 4
3 y tð Þ2 1

3 y t2Dtð Þ1 2
3 Dtf t1Dtð Þ. The accuracy of these

methods can be enhanced by incorporating more steps in the

solution. Due to their greater accuracy over Euler based meth-

ods, which approximate the solution as y t1Dtð Þ5y tð Þ1Dtf tð Þ,
we refer to these methods collectively as the accurate method.

Although the accurate numerical integration method (Runge–

Kutta method in this case) has been applied in a stream

metabolism study (Holtgrieve et al. 2010), aquatic ecologists

have commonly employed simpler, computationally faster,

but less accurate numerical methods such as the Euler method

(Hall and Tank 2005; Van de Bogert et al. 2007; Hanson et al.

2008; Bernot et al. 2010; Solomon et al. 2013; Hotchkiss and

Hall 2014) to solve Eq. 1. The Euler method is a first order

approximation, discretizing the differential equation with a

fixed time step to obtain a solution (Fig. 1b). It is computa-

tionally fast and easy to implement. The approximated trajec-

tory of DO concentration using this approach is given by

O2½ �modeled;t1Dt5 O2½ �modeled;t

1Dt P It ;Ttð Þ2R Ttð Þ1K Ttð Þ O2½ �sat;t2 O2½ �modeled;t

� �� �
(2)

Here, the subscript t denotes time, and Dt is the fixed

time step often corresponding to the logging interval for DO

concentration. Recently, Hall et al. (2015) modified Euler

method to include the average of modeled DO concentra-

tion at the beginning and end of the logging interval in the

calculation of DO saturation deficit. Applying their method,

the approximated trajectory of DO concentration is given by

½O2�modeled;t1Dt5½O2�modeled;t1Dt

�
PðIt ;TtÞ2RðTtÞ

1KðTtÞ
�
½O2�sat;t2

½O2�modeled;t1½O2�modeled;t1Dt

2

�� (3)

which can be rearranged to facilitate recursive prediction of

DO concentration as:

O2½ �modeled;t1Dt5
O2½ �modeled;t1DtðP It ;Ttð Þ2R Ttð Þ1KðTtÞð O2½ �sat;t2

1
2 O2½ �modeled;tÞÞ

11 1
2 K Ttð ÞDt

(4)

Another approach in the aquatic metabolism literature

utilizes the Euler method, but differs in that measured DO

instead of modeled DO is used to calculate DO saturation

deficit (Grace et al. 2015). The approximated trajectory of

DO concentration is given by

O2½ �modeled;t1Dt5 O2½ �modeled;t

1Dt P It ;Ttð Þ2R Ttð Þ1K Ttð Þ O2½ �sat;t2 O2½ �measured;t

� �� � (5)

which can be rearranged as

D O2½ �modeled;t5 O2½ �modeled;t1Dt2 O2½ �modeled;t

1Dt P It ;Ttð Þ2R Ttð Þ1K Ttð Þ O2½ �sat;t2 O2½ �measured;t

� �� � (6)

Equation 6 was implemented in a recent methods paper

(denoted here as the stepwise method) and was phrased as

modeling the changes in DO concentration between succes-

sive measurements (Grace et al. 2015) (Fig. 1c). Although Eqs.

5 and 6 represent the same method in different forms, model-

ing DO concentration O2½ �ð Þ or changes in DO concentration

between measurements ðD O2½ �5 O2½ �t1Dt2 O2½ �tÞ often involves

different assumptions about error distribution, and can influ-

ence inference about stream metabolism. If we assume that

the difference between measured and modeled changes in DO

concentration between successive measurements are inde-

pendent and identically distributed normal variables�
D O2½ �measured;t2D O2½ �modeled;t � N 0;r2

� ��
, the differences

between measured and modeled DO concentration�
O2½ �measured;t2 O2½ �modeled;t

�
will be correlated. Thus assuming

independent and identically distributed normal observation

error between modeled and measured DO concentration

(using Eq. 5, assuming O2½ �measured;t2 O2½ �modeled;t � Nð0;r2
��

can result in different estimates than those obtained from

assuming independent and identically distributed normal

observation error between modeled and measured changes in

DO concentration between successive measurements (using

Eq. 6, assuming D O2½ �measured;t2D O2½ �modeled;t � N
�
0;r2

��
.
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The three methods, accurate, Euler and stepwise methods,

for solving differential equation differ in four important

ways. The first key difference is the accuracy achieved with

each method. The accurate method yields a very accurate

solution because it uses information from several time steps.

The Euler and stepwise methods use a fixed step size, and

only employ first order derivative at one step to approximate

solutions. Such an approximation will introduce error and

thus the solution to a differential equation obtained using

Euler based methods will typically be different from solu-

tions obtained using accurate approaches. The second differ-

ence among the three methods is whether modeled or

measured DO concentration is used in the calculation of rea-

eration. The accurate and Euler methods use modeled DO

concentration to calculate reaeration, whereas the stepwise

method uses measured DO concentration. The third impor-

tant difference among the three methods is how light and

temperature are interpolated between discrete observations.

In the Euler and stepwise methods, only light and tempera-

ture at the time of each DO measurement are used to drive

changes in DO, and thus a piecewise constant interpolation

of light and temperature between measurement times (Fig.

2b) is implicitly assumed. When using the accurate method,

exogenous drivers must be continuous, and therefore light

and temperature must be interpolated between measure-

ments. Common methods of interpolation include linear

interpolation (Fig. 2a), piecewise constant interpolation (Fig.

2b), and smoothing spline interpolation (Fig. 2c). The fourth

important difference is the assumption about the distribu-

tion of error. Usually, the stepwise method assumes that the

differences between modeled and measured changes in DO

concentration between successive measurements are inde-

pendent and identically distributed normal random variables

(D O2½ �measured;t2D O2½ �modeled;t � N 0; r2
� �

), which implies that

the differences between measured and modeled DO concen-

tration are correlated normal random variables. This is differ-

ent than the assumption of independent and identically

distributed random difference between modeled and meas-

ured DO concentration ( O2½ �measured;t2 O2½ �modeled;t � N 0;r2
� �

).

Although it is well known that methods of approximating

solutions to differential equations introduce error, how such

error influences metabolism estimates has not been eval-

uated. In this study, we use a representative stream DO data-

set to evaluate the error associated with Euler and stepwise

methods by comparing the resulting metabolism estimates

to those obtained from the accurate method. For the accu-

rate method, we also evaluate how methods of interpolating

light and temperature influence metabolism estimates.

Assessment

Data

We collected data to estimate whole stream metabolism

in lower Kings Creek (39.10004˚N, 96.60959˚W) located

within the Konza Prairie Biological Station near Manhattan,

Kansas, U.S.A. Specifically, we recorded DO concentration,

water temperature and barometric pressure using a YSI

ProODO handheld optical DO meter (YSI Instruments, Yel-

low Springs, Ohio, U.S.A.) and photosynthetically active

radiation (PAR) using an Odyssey Irradiance logger (Data-

FlowSystems, Christchurch, New Zealand) at a single loca-

tion in the stream every 10 min for 8 consecutive days (28

May–05 June 2013). The DO meter was calibrated with water

saturated air prior to deployment and the irradiance logger

was converted to PAR using a conversion coefficient derived

from comparison to a calibrated PAR sensor.

Metabolism calculation

We simultaneously quantified reaeration, GPP and ER

from the diel changes in DO concentration measured at a

single location in the stream. Changes in DO concentration

can be generally described by Eq. 1, which we specified using

the formulae adopted by Riley and Dodds (2013).

20
.0

20
.5

21
.0

21
.5

22
.0

0 30 60 90

a

0 30 60 90

Time (min)

b

0 30 60 90

c

Fig. 2. Schematics of different methods of interpolating light and temperature data. (a–c) are illustrations of linear interpolation, piecewise constant

interpolation and smoothing spline interpolation, respectively. Temperature data plotted in this figure are a subset of the data used in this article.
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Specifically, we calculated the O2½ �sat as follows (American

Public Health Association 1995).

O2½ �sat5e
2139:34411 157570

T1273:152 66423080

T1273:15ð Þ2
112438000000

T1273:15ð Þ3
2862194900000

T1273:15ð Þ4 3
Pa30:998

101:3
(7)

where T is temperature (8C) and Pa is barometric pressure

(kPa). The reaeration coefficient K is temperature corrected

(Elmore and West 1961; Bott 2006) based on the following

formula:

K Tð Þ5K2031:024T220 (8)

where K20 is the reaeration coefficient at 208C. We modeled

respiration rate as a temperature dependent process (Gulliver

and Stefan 1984; Parkhill and Gulliver 1999)

R Tð Þ5R2031:045T220 (9)

where R20 is the respiration rate at 208C. We modeled photo-

synthesis rate as a saturating function of light (Jassby and

Platt 1976) with temperature dependence (Megard et al.

1984)

P I;Tð Þ5Pmaxtanh
aI

Pmax

� �
31:036T220 (10)

I is PAR (lE m22 s21), a is the slope of the photosynthesis–

light relationship at low light intensity, and Pmax is the pho-

tosynthesis rate at light saturation. In this formulation of Eq.

1, I and T are from field measurements and Pmax, a, R20 and

K20 are parameters to be estimated. Although researchers

have chosen different formulations of the model, the shape

of R Tð Þ and P I;Tð Þ are generally similar. Therefore, our par-

ticular choice of model formulation should result in no loss

of generality when comparing the influences of computation

methods on metabolism estimates.

We used the three methods described above, Euler, step-

wise and accurate, to simulate Eq. 1 and provided modeled

DO (Euler and accurate methods) or changes in DO (stepwise

method) for a particular set of parameters. Interpolating

light and temperature was unnecessary for the Euler and

stepwise methods because both methods only use light and

temperature data at the time of each DO measurement.

Therefore, we only compared the three methods of interpo-

lation, linear (Fig. 2a), piecewise constant (Fig. 2b), and

smoothing spline (Fig. 2c), using the accurate numerical

method. In total, we compared parameter estimates and

daily GPP and ER estimates using five methods with the

same data set: stepwise method, Euler method and accurate

method with three different ways of interpolating light and

temperature.

We implemented the accurate method using the differen-

tial equation solver lsoda in the R package deSolve (Soetaert

et al. 2010). The function lsoda implements linear multistep

methods to solve differential equations with high accuracy.

Specifically, the function automatically selects between the

Adams method and the backwards differentiation formula

method by dynamically monitoring the data (Hindmarsh

1983; Petzold 1983). The three methods of interpolation

were implemented as illustrated in Fig. 2a–c. For the linear

interpolation, we assumed that light/temperature changed

linearly between logging intervals (Fig. 2a). For piecewise

constant interpolation, we assumed constant light/tempera-

ture between logging intervals equal to the measurement

made at the beginning of each logging interval (Fig. 2b). For

the smoothing spline interpolation, we first fit a cubic

smoothing spline between light/temperature and time, and

then used the fitted smoothing spline to represent light/tem-

perature over time (Fig. 2c). We implemented the linear

interpolation and piecewise constant interpolation using

function approxfun and smoothing spline interpolation

using function smooth.spline in R. We used the default

number of knots in function smooth.spline. For the 10 min

logging interval, we used 153 knots for 1153 light/tempera-

ture measurements, and for the 30 min logging interval, we

used 116 knots for 384 light/temperature measurements. For

the Euler method, we used Eq. 2 and the logging interval of

DO data as the step size Dt. We also evaluated whether slight

modifications to Euler method could improve its accuracy.

We implemented the modified Euler method by Hall et al.

(2015) and applied this method to the same data set with 10

min logging interval following Eq. 4. For the stepwise

method, we used Eq. 6 to model the changes in DO concen-

tration between successive measurements because this is the

commonly implemented form when measured DO is used to

compute DO saturation deficit (sensu Grace et al. 2015). We

used measured DO concentration to calculate reaeration in

the stepwise method, whereas we used modeled DO in the

Euler and accurate methods. Finally, we explored how the

differences in metabolism estimates among methods change

with the logging interval of DO data because error associated

with approximate methods increases with step size of time.

To this end, we subsampled the data every 30 min and per-

formed the same estimation with the five methods discussed

above.

We employed a Bayesian approach to estimate parameters

and daily GPP and ER with each of the methods. For a given

set of parameters, we numerically solved Eq. 1 with the five

methods discussed above, and obtained a trajectory of mod-

eled DO concentration (accurate method and Euler method)

or modeled changes in DO concentration between successive

measurements (stepwise method). We assumed that the dif-

ferences between modeled and measured DO (accurate

method and Euler method) or changes in DO concentration

between successive measurements (stepwise method) were

independent and identically distributed normal random vari-

ables. It is worth noting that such an assumption about

independence of error might be a simplification of reality,
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and consequently, we may underestimate the uncertainty

associated with parameters and metabolism. The distribu-

tional assumption of error provided the basis to compute the

likelihood for any given set of parameters. We used uniform

priors for all the parameters in the model. We set the lower

bound of the uniform prior at 0 and the upper bound at val-

ues significantly larger than found in the literature for all

parameters. We used Markov Chain Monte Carlo (MCMC) to

sample the posterior distribution of the parameters. Specifi-

cally, we employed the adaptive random walk Metropolis–

Hasting algorithm (Haario et al. 2001) with the function

metrop in the R package mcmc (Geyer and Johnson 2014).

We performed visual inspection and Geweke diagnostics

(Geweke 1992) of the trace plots to ensure the convergence

of the Markov Chains.

To obtain posterior distributions of GPP and ER, we calcu-

lated the corresponding metabolism rates from each combina-

tion of parameters in each Markov chain. More specifically,

we numerically integrated the instantaneous rates of GPP and

ER over time. With the Euler and stepwise methods, the

numerical integration simplified to a summation; instantane-

ous rates at each measurement time were multiplied by the

logging interval to compute the GPP and ER for all intervals.

We then obtained the daily GPP and ER by summing over all

the intervals in a day. We performed the same diagnostics of

Markov chains to ensure convergence. We reported the aver-

age daily GPP and ER over the 8 d.

For both parameter estimates and daily GPP and ER esti-

mates, we computed posterior means and 95% highest poste-

rior density intervals using the R package coda (Plummer

et al. 2006). To compare parameter or daily GPP and ER esti-

mates from different methods, we examined whether the

95% highest posterior density intervals overlapped or not.

All computation and data analyses were performed in R

3.2.0 (R Core Team 2015). The R code for all methods are

supplied as Supporting Information.

We implemented two variants of the stepwise method to

evaluate how using measured DO concentration and how

making different distributional assumptions about error each

influence parameter and daily GPP and ER estimates (Table

1). In the first variant (referred to as stepwise variant 1), we

used modeled DO to calculate DO saturation deficit, but

assumed independent and identically distributed normal

error between modeled and measured changes in DO con-

centration between successive measurements (D O2½ �measured;t2

D O2½ �modeled;t � N 0; r2
� �

). An alternative way of describing

this variant of the stepwise method is that we modeled DO

concentration using the Euler method as prescribed in Eq. 2,

but instead of comparing measured and modeled DO con-

centration, we compared the measured and modeled changes

in DO concentration between successive measurements,

assuming that differences were independent and identically

distributed normal random variables. In the second variant

(referred to as stepwise variant 2), we used measured DO

concentration to calculate DO saturation deficit and

obtained the trajectory of modeled DO concentration accord-

ing to Eq. 5. We assumed that the difference between mod-

eled and measured DO concentrations were independent and

identically distributed normal variables ( O2½ �measured;t2

O2½ �modeled;t � N 0;r2
� �

). We applied these two variants of step-

wise method to the data with a 10 min logging interval, and

employed the same computational Bayesian approach to

obtain parameter and daily GPP and ER estimates.

Results

The different computational methods for modeling

aquatic metabolism yielded substantially different parame-

ter estimates as well as daily GPP and ER estimates. Parame-

ter estimates (Fig. 3) and estimated daily GPP and ER (Fig.

4) using the stepwise method were dramatically different

from all other methods, irrespective of logging interval.

Both variants of the stepwise method underestimated

parameters and daily GPP and ER compared to the Euler

and accurate methods (Supporting Information Table A4).

While the stepwise method and both variants fit the

changes in DO concentration between successive measure-

ments well (Supporting Information Fig. A1f–h), the step-

wise method (Fig. 5f) and stepwise method variant 2 (Table

1), for which we used measured DO to calculate DO satura-

tion deficit and matched measured and modeled DO (Fig.

5h), fit the DO concentration trajectory poorly. Stepwise

method variant 1 (Table 1), for which modeled DO was

used to calculate DO saturation deficit, fit DO concentra-

tion trajectory well (Fig. 5g).

Table 1. Assumptions used in various methods. Columns correspond to different assumptions about error distribution. O2½ �measured;t

2 O2½ �modeled;t � N 0; r2
� �

refers to the assumption that difference between measured and modeled DO concentration are independent
and identically distributed random variables. D O2½ �measured;t2D O2½ �modeled;t � N 0; r2

� �
refers to the assumption that differences

between measured and modeled changes in DO concentration between successive measurements are independent and identically
distributed random variables. Rows correspond to whether measured or modeled DO concentration is used to calculated DO satura-
tion deficit.

O2½ �measured;t2 O2½ �modeled;t � N 0;r2
� �

D O2½ �measured;t2D O2½ �modeled;t � N 0;r2
� �

Measured DO Stepwise variant 2 Stepwise

Modeled DO Accurate, Euler Stepwise variant 1
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The Euler and accurate methods yielded much smaller

magnitude of discrepancies in parameter (Fig. 3) and daily

GPP and ER estimates (Fig. 4). However, the Euler method

and the accurate method with piecewise constant interpola-

tion resulted in significant differences in parameter and daily

GPP and ER estimates, shown as non-overlapping confidence

intervals (Figs. 3, 4, Supporting Information Tables A1, A2).

In addition, the difference between the Euler method and

the accurate method became more pronounced as the log-

ging interval of DO increased (Figs. 3, 4). The modified Euler

method by Hall et al. (2015) generated estimates much more

consistent to those obtained using the accurate method than

the basic Euler method (Supporting Information Table A4).

The accurate, Euler and modified Euler methods by Hall

et al. (2015) all fit the observed DO concentration (Fig. 5a–e)

and DO changes between measurements well (Supporting

Information Fig. A1a–e). The parameter and daily GPP and

ER estimates obtained from stepwise, Euler and accurate

methods with three interpolations of light and temperature

are fully summarized in the appendix (see Supporting Infor-

mation tables A1, A2 and A3).

Discussion

Generality of the comparison

Although we clearly demonstrated that different methods

of solving the standard differential equation for DO dynam-

ics (Eq. 1) and different means of interpolating light and

temperature result in differences in metabolism estimates

(Figs. 3, 4), our comparison is based on one representative

data set. The DO data we used are from Kings Creek, a typi-

cal prairie stream that has been a model system for extensive

studies of metabolism rates historically (Dodds et al. 1996;
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Mulholland et al. 2001; Wilson and Dodds 2009; Bernot

et al. 2010; Murdock et al. 2010; Riley and Dodds 2012). The

daily GPP and ER rates in this stream from our estimates

based on accurate and Euler methods, as well as previous

estimates are in the range commonly found in headwater

streams (Mulholland et al. 2001; Bernot et al. 2010). Thus,

we imagine that the comparisons among methods made

using this data set can be viewed as fairly general. However,

without testing the methods using multiple data sets, we

cannot definitively conclude that the particular magnitude

and direction of differences found in this study will apply to

all headwater streams. Therefore, our discussion focuses on

the potential influences of different methods on metabolism

estimates, not on whether these methods will always influ-

ence metabolism estimates in a particular way.

Stepwise method

We showed that the stepwise method significantly under-

estimated both the parameters and the daily GPP and ER

rates. The particular direction and magnitude of differences

found in this study are in agreement with previous work.

Grace et al. (2015) found in an extensive data set that the

daily GPP and ER estimates based on the stepwise method

they implemented were highly correlated with but often

lower than estimates based on the accurate numerical

method implemented by Holtgrieve et al. (2010). Through

the comparisons performed here, we demonstrated that such

differences can arise due to the numerical method used to

obtain a solution to the DO differential equation and the

associated assumption about error distribution.

Stepwise, Euler and accurate methods with piecewise con-

stant interpolation assume the same interpolation of light

and temperature. Thus, the fact that the stepwise method

resulted in dramatic differences in parameter estimates sug-

gests that such difference was primarily the result of using

measured DO to calculate DO saturation deficit or the result

of the different assumption about error (Table 1). To deter-

mine the source of the differences, we implemented two var-

iants of the stepwise method (Table 1). We found that

parameter estimates based on both variants (Supporting Infor-

mation Table A4) were quite different from those obtained

from the Euler and accurate methods (Supporting Information

Table A1). Thus, using measured DO to calculate DO satura-

tion deficit or assuming independent and identically distrib-

uted normal error between modeled and measured changes in

DO concentration (D O2½ �measured;t2D O2½ �modeled;t � N 0;r2
� �

)

can cause significant differences in parameter estimates.

Therefore, it is necessary to evaluate and justify the assump-

tions before making a choice of computational method. Theo-

retically, we can examine the consistency between underlying

assumptions and computation methods, and judge the valid-

ity of assumptions based on ecological understanding of the

focal system. Statistically, the model fit to data may provide

evidence in favor of or against a particular assumption, but it

is worth remembering that model fit itself does not defini-

tively prove or invalidate a particular error assumption. The

poor fit could be a result of proper error assumption but an

inappropriate formulation of GPP and ER. We thus argue that

evidence from the examination of model fit should be viewed

as suggestive.

The basic stepwise method uses measured DO to calcu-

late DO saturation deficit instead of using modeled DO,

which is inconsistent with the typical assumptions of

observation error regarding differences between DO
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changes prescribed by Eq. 1 and observed DO changes

between successive measurements. The assumption of

observation error postulates that the model reflects the true

average DO concentration given the “true” value of the

parameters in Eq. 1 (Hilborn and Mangel 1997). Any devia-

tion between modeled and measured DO concentration

changes between successive measurements is the result of

observation error, including inaccuracy of instruments or

random deviation of DO concentration from the reach

average in any specific parcel of water being measured.

With such an assumption, it is clear that using modeled

DO concentration to calculate reaeration is appropriate

because the model reflects the true average DO concentra-

tion. Using measured DO to calculate reaeration is logically

inconsistent with the assumption of observation error. For

example, with an inappropriate set of parameters for Eq. 1,

the modeled trajectory of DO will be very far from the mea-

surement and this discrepancy will significantly influence

the calculation of DO saturation deficit, as it should. It is

this discrepancy that is critical for assessing or inferring the

probability of a particular set of parameters. Therefore, if

we use measured DO to calculate DO saturation deficit, we

do not properly “penalize” the inappropriate set of parame-

ters. This could be one of the reasons for the huge
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Fig. 5. Observed (dots) and modeled (red line) DO concentration for data with 10 min logging interval based on (a) accurate method with linear
interpolation, (b) accurate method with piecewise constant interpolation, (c) accurate method with smoothing spline interpolation, (d) Euler method,

(e) modified Euler method by Hall et al. (2015), (f) stepwise method, (g) stepwise method variant 1, using modeled DO in DO saturation deficit calcu-
lation and assuming independent and identically distributed normal error between measured and modeled DO changes, and (h) stepwise method var-

iant 2, using measured DO in DO saturation deficit calculation and assuming independent and identically distributed normal error between measured
and modeled DO concentration.
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discrepancy in metabolism estimates between the stepwise

method and other methods.

Alternatively, one might assume a process error model for

which the DO concentration is relatively uniform and DO

measurements are error free. The measured DO then cor-

rectly reflects the true average DO concentration, and any

discrepancy between measured and modeled DO would be

due to processes unaccounted for in the model. In this situa-

tion, using measured DO to calculate DO saturation deficit

would be appropriate. However, the assumption of inde-

pendent and identically distributed normal process errors

could be problematic. Any processes that change DO con-

centration are likely to be systematic and thus, it is unrea-

sonable and unrealistic to assume that independent,

identically distributed random deviations would be caused

by such systematic processes. More importantly, such an

assumption implies that the model does not fully capture

the processes influencing DO dynamics. In this situation,

simply using a method supported by an incomplete model is

not the best remedy. The more appropriate remedy is to

incorporate the ignored processes in the model although

this may be quite difficult. For example, McCutchan et al.

(2002) and Hall and Tank (2005) explicitly modeled ground-

water input to account for its influence on DO concentration

and on metabolism estimates.

Although using measured DO to calculate DO saturation

deficit is theoretically consistent with a process error model,

the stepwise method that makes the assumption of inde-

pendent and identically distributed normal process error

results in a model that fits DO changes well (Supporting

Information Fig. A1f), but provides a very poor fit to the

observed DO concentration data (Fig. 5f). Variant 2 of step-

wise method (Table 1) also resulted in a poor fit to the

observed DO concentration trajectory (Fig. 5h). This variant

of the stepwise method and the Euler methods differ only in

whether measured or modeled DO is used in the calculation

of the DO saturation deficit (Table 1). Together, the rela-

tively good fit of the Euler method (Fig. 5d) and the poor fit

of the stepwise method (Fig. 5f) and stepwise method variant

2 (Fig. 5h) suggest that the assumption of independent and

identically distributed normal process error is unlikely to be

valid. This does not necessarily invalidate a process error

model, but clearly illustrates that the distributional assump-

tion of process error thus specified is inadequate, at least for

our data set.

The dramatically different metabolism estimates obtained

with the stepwise method could also result from fitting mod-

eled changes in DO to data instead of fitting modeled DO

concentration to data, assuming independent and identically

distributed normal error between the measured and modeled

changes in DO concentration (D O2½ �measured;t2D O2½ �modeled;t �
N 0;r2
� �

). Stepwise method variant 1 also underestimated the

parameters and daily GPP and ER rates, although to much

less of an extent compared to the variant 2 (Supporting Infor-

mation Table A4). Variant 1 of the stepwise method differs

from the Euler method only in that it fits modeled DO

changes instead of modeled DO concentration to data (Table

1). This suggests that the different distributional assumption

of error could also be responsible for the underestimation of

parameters and daily GPP and ER. Variant 1 of the stepwise

method resulted in a visually good fit to observed DO (Fig.

5g) and changes in DO (Supporting Information Fig. A1g)

data. The apparent good fit of the stepwise method variant 1

(Fig. 5g, Supporting Information Fig. A1g) and the Euler

method (Fig. 5d, Supporting Information Fig. A1d) suggest

that either distributional assumption of error could be reason-

able, but the fact that metabolism estimates differ between

the two methods illustrates that apparently good fit alone is

insufficient for guaranteeing accurate parameter and flux

estimates.

Euler method

We demonstrated that the Euler method and the accurate

method with different interpolation of light and temperature

result in similar parameters and metabolism estimates that

collectively differ from those generated by the stepwise

method (Figs. 3, 4). However, the confidence intervals of

parameter estimates and daily GPP and ER estimates between

the Euler method and accurate method with piecewise con-

stant interpolation do not overlap for both 10 min and 30

min logging intervals (Figs. 3, 4, Supporting Information

Tables A1, A2). Because the Euler method only uses light

and temperature at the measurement time, it is equivalent

to a piecewise constant interpolation of light and tempera-

ture. Therefore, the difference in metabolism estimates

between the Euler method and the accurate method with

piecewise constant interpolation is purely due to the differ-

ence in how Eq. 1 is solved numerically. Specifically, the dif-

ference lies in whether changes in DO concentration during

one logging interval are accounted for in the calculation of

DO saturation deficit. Thus, the Euler approximation will

likely result in larger differences in parameters estimates and

in GPP and ER when DO concentration changes significantly

on timescales shorter than the logging interval, and differen-

ces between the Euler and accurate methods will be more

pronounced as the logging interval increases as we demon-

strated in this study. Consequently, researchers should con-

sider whether the difference caused by Euler methods with a

particular logging interval is acceptable. However, it is diffi-

cult to articulate a general rule on the suitable logging fre-

quency for Euler method. We recommend testing a subset of

the data with both exact and Euler methods and examining

whether the discrepancy is acceptable for the particular

research question.

One advantage of the Euler method over the accurate

method is its efficiency in computation. Solving Eq. 1 using

the accurate method is computationally intensive, and proc-

essing a large amount of metabolism data will often require
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powerful and dedicated computational resources. For exam-

ple, on a single core of a 2.0 GHz Intel Core i7 4750HQ

CPU, it takes 5 min and 32 s to evaluate 80,000 iterations of

MCMC using the Euler method for our example data set

(logged every 10 min for 8 d) and it takes the accurate

method with linear interpolation 45 h and 12 min to per-

form the same calculation. The numerical differences in

parameter estimates and daily GPP and ER estimates between

the Euler and exact methods decrease with step size, but

such differences can be significant as shown by the non-

overlapping confidence intervals. If the statistical differences

in parameter estimates or GPP and ER estimates are impor-

tant for a specific research question, the Euler method is

inadequate, but if such numerical differences in parameter

estimates and GPP and ER estimates are tolerable in an eco-

logical sense, the Euler method could be an acceptable com-

promise if the computational resources required for the

accurate method are unavailable. Recently, Hall et al. (2015)

modified the Euler method to include the average of mod-

eled DO concentrations at the beginning and end of the log-

ging interval in the calculation of DO saturation deficit. We

used this method with 10 min logging interval data and

obtained the parameter and mean daily GPP and ER esti-

mates. Compared to the standard Euler method, this modifi-

cation resulted in estimates more consistent with the values

obtained using the accurate method with piecewise constant

interpolation of light and temperature (Supporting Informa-

tion Table A4). Although we are not aware of a strict mathe-

matical proof of the convergence and stability of such a

modified method of solving differential equation, the result

from our study suggested that this method might provide a

relatively accurate solution while maintaining the advantage

of computation speed.

Influences of interpolation

We also compared how different methods of interpolating

light and temperature influence metabolism estimates.

Among the three methods compared in this study, the piece-

wise constant interpolation results in the greatest discrep-

ancy in estimates compared to the linear and smoothing

spline interpolations (Figs. 3, 4). One way to choose the

most appropriate interpolation method would be to first

interpolate the data with different methods based on sub-

sampled data and then compare the interpolation with the

actual measurements. Given the continuous nature of light

and temperature, the linear interpolation and smoothing

spline interpolation are more reasonable as they represent

the continuous changes in light and temperature rather than

the abrupt change at the end of a logging interval in the

piecewise constant interpolation (Fig. 2a–c). However, rates

of primary production and respiration may not respond to

changes in light and temperature instantaneously. Due to

the time lag of response, it is possible that the piecewise con-

stant interpolation provides a better approximation given a

particular combination of time lag of response and logging

interval of light and temperature. Although piecewise con-

stant interpolation may compensate for the time lag of

responses, using a less realistic approximation to compensate

for factors not included in the model is not an ideal

approach. A better approach is to incorporate the time lag of

response in the model of DO dynamics. In our study, the

metabolism estimates based on linear and smoothing spline

interpolations are very similar. Therefore, we conclude that

either linear interpolation or smoothing spline interpolation

are reasonable, and the choice of interpolation between

these two methods is unlikely to cause significant differences

in metabolism estimates.

Recommendation

The choice of computational methods involves both theo-

retical and practical considerations. The chosen method

should be logically consistent with the underlying model

assumptions and practically feasible for implementation.

From a theoretical perspective, the stepwise method is a pro-

cess error model and is not consistent with the assumption

of observation error. The assumption of identically and inde-

pendent distributed process error is unlikely to be ecologi-

cally realistic and resulted in a poor model fit with the data

set used here. Using a model with inconsistent assumptions

could lead to significant differences in parameter, GPP, and

ER estimates. Therefore, we recommend that researchers

carefully evaluate the model assumptions before applying

the stepwise method.

The Euler method, although logically consistent with the

assumptions of an observation error model, can lead to stat-

istically significant differences in parameter and in GPP and

ER estimates. Therefore, the accurate method is always pre-

ferred if we assume an observation error model. However, if

computational resources are not available to implement the

accurate method, and the error associated with Euler method

is tolerable, the Euler method is an acceptable approach.

Finally, we recommend using either linear or smoothing

spline interpolations for light and temperature, and the

choice between these two methods is unlikely to affect

metabolism estimate in a significant way.
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